• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Novel Modulation Structure for DS-UWB Using Perfect Sequence

Cai, Jia-long 24 August 2007 (has links)
In this thesis, a novel transmission structure is proposed for the Direct Sequence Ultra Wide-Band (DS-UWB) systems. The main purpose of the proposed structure is to eliminate the inter-symbol interference caused by the multi-path environment. In DS-UWB systems, shortening the guard interval is one of the possible ways to achieve higher data rates. However, interference will increase inversely with the length of the guard interval because the signal delay spread caused by the multi-path effect will induce inter-symbol interference. In this thesis, a novel transmission structure that utilizes the autocorrelation properties of the perfect sequence is proposed for interference cancellation in DS-UWB systems. Both computer simulation and mathematical analysis are provided for performance evaluation.
2

Pre-equalization for pre-Rake MISO DS-UWB systems

Torabi, Elham 05 1900 (has links)
In recent years, ultra-wideband (UWB) communications has gained tremendous popularity in both research community and industry. The large bandwidth of UWB systems raises new wireless channel effects and consequently unique advantages as well as challenges to be dealt with, compared to conventional wireless systems. One of these advantages is the ability to resolve dense multipath components and use Rake combining at the receiver in order to significantly reduce the negative effects of fading. However, implementing a Rake receiver with a sufficiently large number of fingers to make use of this advantage is an evident challenge for most UWB devices with limited signal processing capabilities. A possible approach to overcome this problem is to move computational complexity from the receiver to the more powerful transmitter, which is the main focus of the present work. In this thesis, we propose two novel pre-equalization schemes for multiple- input single-output (MISO) direct-sequence ultra-wideband (DS-UWB) systems with pre-Rake combining and symbol-by-symbol detection. The first pre-equalization filter (PEF) scheme employs one PEF per transmit antenna, whereas in the second, simplified PEF (S-PEF) scheme all transmit antennas share the same PEF. For both schemes the optimum finite impulse response (FIR) and infinite impulse response (IIR) PEFs are calculated based on the minimum mean squared error (MMSE) criterion. We show that in contrast to previously proposed schemes for DS-UWB, both our proposed PEF schemes efficiently exploit the channel shortening properties of the pre-Rake filter. In particular, our proposed PEF schemes operate at the symbol level. We also show that under certain conditions the S-PEF scheme achieves the same performance as the more complex PEF scheme. Finally, we demonstrate that a single-input multiple-output (SIMO) DS-UWB system with post-Rake combining and MMSE post-equalization is the dual system to the considered MISO DS–UWB system with pre-Rake combining and MMSE pre-equalization. This uplink-downlink duality can be exploited for efficient calculation of the PEFs and for complexity reduction. Our simulation results show that the proposed PEF schemes achieve significant performance gains over pre-Rake combining without equalization even if only short PEFs are employed, and this is the case even for long UWB channel impulse responses.
3

Pre-equalization for pre-Rake MISO DS-UWB systems

Torabi, Elham 05 1900 (has links)
In recent years, ultra-wideband (UWB) communications has gained tremendous popularity in both research community and industry. The large bandwidth of UWB systems raises new wireless channel effects and consequently unique advantages as well as challenges to be dealt with, compared to conventional wireless systems. One of these advantages is the ability to resolve dense multipath components and use Rake combining at the receiver in order to significantly reduce the negative effects of fading. However, implementing a Rake receiver with a sufficiently large number of fingers to make use of this advantage is an evident challenge for most UWB devices with limited signal processing capabilities. A possible approach to overcome this problem is to move computational complexity from the receiver to the more powerful transmitter, which is the main focus of the present work. In this thesis, we propose two novel pre-equalization schemes for multiple- input single-output (MISO) direct-sequence ultra-wideband (DS-UWB) systems with pre-Rake combining and symbol-by-symbol detection. The first pre-equalization filter (PEF) scheme employs one PEF per transmit antenna, whereas in the second, simplified PEF (S-PEF) scheme all transmit antennas share the same PEF. For both schemes the optimum finite impulse response (FIR) and infinite impulse response (IIR) PEFs are calculated based on the minimum mean squared error (MMSE) criterion. We show that in contrast to previously proposed schemes for DS-UWB, both our proposed PEF schemes efficiently exploit the channel shortening properties of the pre-Rake filter. In particular, our proposed PEF schemes operate at the symbol level. We also show that under certain conditions the S-PEF scheme achieves the same performance as the more complex PEF scheme. Finally, we demonstrate that a single-input multiple-output (SIMO) DS-UWB system with post-Rake combining and MMSE post-equalization is the dual system to the considered MISO DS–UWB system with pre-Rake combining and MMSE pre-equalization. This uplink-downlink duality can be exploited for efficient calculation of the PEFs and for complexity reduction. Our simulation results show that the proposed PEF schemes achieve significant performance gains over pre-Rake combining without equalization even if only short PEFs are employed, and this is the case even for long UWB channel impulse responses.
4

Pre-equalization for pre-Rake MISO DS-UWB systems

Torabi, Elham 05 1900 (has links)
In recent years, ultra-wideband (UWB) communications has gained tremendous popularity in both research community and industry. The large bandwidth of UWB systems raises new wireless channel effects and consequently unique advantages as well as challenges to be dealt with, compared to conventional wireless systems. One of these advantages is the ability to resolve dense multipath components and use Rake combining at the receiver in order to significantly reduce the negative effects of fading. However, implementing a Rake receiver with a sufficiently large number of fingers to make use of this advantage is an evident challenge for most UWB devices with limited signal processing capabilities. A possible approach to overcome this problem is to move computational complexity from the receiver to the more powerful transmitter, which is the main focus of the present work. In this thesis, we propose two novel pre-equalization schemes for multiple- input single-output (MISO) direct-sequence ultra-wideband (DS-UWB) systems with pre-Rake combining and symbol-by-symbol detection. The first pre-equalization filter (PEF) scheme employs one PEF per transmit antenna, whereas in the second, simplified PEF (S-PEF) scheme all transmit antennas share the same PEF. For both schemes the optimum finite impulse response (FIR) and infinite impulse response (IIR) PEFs are calculated based on the minimum mean squared error (MMSE) criterion. We show that in contrast to previously proposed schemes for DS-UWB, both our proposed PEF schemes efficiently exploit the channel shortening properties of the pre-Rake filter. In particular, our proposed PEF schemes operate at the symbol level. We also show that under certain conditions the S-PEF scheme achieves the same performance as the more complex PEF scheme. Finally, we demonstrate that a single-input multiple-output (SIMO) DS-UWB system with post-Rake combining and MMSE post-equalization is the dual system to the considered MISO DS–UWB system with pre-Rake combining and MMSE pre-equalization. This uplink-downlink duality can be exploited for efficient calculation of the PEFs and for complexity reduction. Our simulation results show that the proposed PEF schemes achieve significant performance gains over pre-Rake combining without equalization even if only short PEFs are employed, and this is the case even for long UWB channel impulse responses. / Applied Science, Faculty of / Electrical and Computer Engineering, Department of / Graduate
5

Performance Comparison of Selective Rake Receivers with CLEAN Algorithms in UWB Systems

Yang, Siang-Yu 26 July 2006 (has links)
The Ultra-Wideband (UWB) channel is a dense multipath channel. The system performance and design complexity issues of selective-Rake receiver (SRake) are studied. Rake receiver has difficulties achieving desired system performance in the dense multipath environment. The main ideas of SRake receiver are to obtain the SNR level on known multipath channel and determine the desired number of Rake fingers. In the implementation of the SRake, the CLEAN algorithm is used in selecting the paths with relatively high energy. We can improve the performance of SRake receiver by increasing the accuracy of path selection. By the property of local maximum peak within the smaller partition, Two-Stage CLEAN algorithm acquires the more accurate delay time of multipath. In order to mitigate the sidelobe effect and noise interference, the key assumption in the Deng¡¦s Modified CLEAN algorithm is that using average amplitude around the considered data change as the criterion to determine if the data value is a true path. In this thesis, we investigate CLEAN, Two-Stage CLEAN and Deng¡¦s Modified CLEAN algorithm in three different systems including UWB-Impulse Radio, Pulse Radar and DS-UWB. From the performance comparison, it can be seen that the Two-Stage CLEAN algorithm that has the highest accuracy of path selection in UWB system.

Page generated in 0.0203 seconds