1 |
Object-based Classification Of Landforms Based On Their Local Geometry And Geomorphometric ContextGercek, Deniz 01 April 2010 (has links) (PDF)
Terrain as a continuum can be categorized into landform units that exhibit common physiological and morphological characteristics which might serve as a boundary condition for a wide range of application domains. However, heterogeneous views, definitions and applications on landforms yield inconsistent and incompatible nomenclature that lack interoperability. Yet, there is still room for developing methods for establishing a formal background for general type of classification models to provide different disciplines with a basis of landscape description that is also commonsense to human insight.
This study proposes a method of landform classification that reveals general geomorphometry of the landscape. Landform classes that are commonsense to human insight and relevant to various disciplines is adopted to generate landforms at the landscape scale. Proposed method integrates local geometry of the surface with geomorphometric context. A set of DTMs at relevant scale are utilized where local geometry is represented with morphometric DTMs, and geomorphometric context is incorporated through relative terrain position and terrain network. &ldquo / Object-based image analysis (OBIA)&rdquo / tools that have the ability to segment DTMs into more representative terrain objects and connect those objects in a multi-level hierarchy is adopted. A fuzzy classification approach is utilized via semantic descriptions to represent ambiguities both in attribute and geographical space.
Method is applied at different case areas to evaluate the efficiency and stability of the classification. Outcomes portray reasonable amount of consistency where the results can be utilized as general or multi-purpose regarding some ambiguity that is inherent in landforms as well.
|
2 |
Thermal-electrical co-simulation of shipboard integrated power systems on an all-electric shipPruske, Matthew Andrew 2009 August 1900 (has links)
The goal of the work reported herein has been to model aspects of the electrical distribution system of an all-electric ship (AES) and to couple electrical load behavior with the thermal management network aboard the ship. The development of a thermally dependent electrical network has built upon an in-house thermal management simulation environment to replace the existing steady state heat loads with dynamic, thermally dependent, electrical heat loads. Quantifying the close relationship between thermal and electrical systems is of fundamental importance in a large, integrated system like the AES.
This in-house thermal management environment, called the Dynamic Thermal Modeling and Simulation (DTMS) framework, provided the fundamental capabilities for modeling thermal systems and subsystems relevant to the AES. The motivation behind the initial work on DTMS was to understand the dynamics of thermal management aboard the ship. The first version, developed in 2007, captured the fundamental aspects of system-level thermal management while maintaining modularity and allowing for further development into other energy domains.
The reconfigurable nature of the DTMS framework allowed for the expansion into the electrical domain with the creation of an electrical distribution network in support of thermal simulations. The dynamics of the electrical distribution system of the AES were captured using reconfigurable and physics-based circuit elements that allow for thermal feedback to affect the behavior of the system. Following the creation of the electrical network, subsystems and systems were created to simulate electrical distribution. Then, again using the modularity features of DTMS, a thermal resistive heat flow network was created to capture the transient behavior of heat flow from the electrical network to the existing thermal management framework. This network provides the intimate link between the thermal management framework and the electrical distribution system.
Finally, the three frameworks (electrical, thermal resistive, and thermal management) were combined to quantify the impact that each system has relative to system-level operation. Simulations provide an indication of the unlimited configurations and potential design space a user of DTMS can explore to explore the design of an AES. / text
|
Page generated in 0.0171 seconds