1 |
The role of reactive oxygen species in thyroid radio-carcinogenesis / Rôle des espèces réactives de l'oxygène dans la radio-carcinogenèse thyroïdienneHecht castro medeiros, Fabio 28 March 2018 (has links)
Les cancers papillaires de la thyroïde (PTC) sont les tumeurs endocrines les plus courantes et représentent 2-3% de tous les cancers humains. Les altérations génétiques les plus pertinentes trouvées dans ces tumeurs sont des mutations dans les gènes BRAF et RAS, et des translocations du gène RET. Ces translocations oncogéniques, connues sous le nom de RET/PTC, résultent de la fusion de RET avec des gènes partenaires non-apparentés. L’exposition aux radiations ionisantes est le facteur de risque le plus important pour la formation de RET/PTC. Durant ces dernières années, notre groupe a mis en évidence un rôle crucial des espèces réactives de l'oxygène (ROS) dans la formation de RET/PTC dans des cellules thyroïdiennes in vitro et a notamment montré que l'irradiation (IR) induit l’établissement d’un stress oxydatif persistant du aux ROS produites par la NADPH Oxydase DUOX1, laquelle est induite à post-IR. Cela conduit à des dommages à l'ADN. Les enfants présentent un risque significativement plus élevé de développer des cancers radio-induits de la thyroïde exprimant RET/PTC, probablement en raison du taux de prolifération élevé des cellules. Ceci suggère que la dynamique de réplication pourrait être impliquée dans la formation de la translocation RET/PTC1. En effet, il a été montré que l'induction pharmacologique d’un stress réplicatif peut favoriser la formation de RET/PTC in vitro dans les cellules thyroïdiennes. Ainsi, pour déterminer si un stress réplicatif peut contribuer aux effets à long terme de l'irradiation: à savoir une persistance des lésions de l'ADN et la formation de RET/PTC1, nous avons analysé les effets à post-IR dans les cellules NTHY-ori3.1. Nos résultats confirment qu’une irradiation des cellules aux rayons X à la dose de 5 Gy induit deux vagues de stress oxydatif: une première vague forte mais transitoire qui se produit dans les minutes qui suivent l'irradiation et une deuxième vague dont l’ augmentation débute 2 jours après l'irradiation pour persister ensuite. Ces deux pics de stress oxydatif conduisent à deux pics de dommages à l'ADN. L'irradiation des cellules à cette dose n’a aucun effet sur la prolifération et sur la progression du cycle cellulaire. Cependant, plusieurs marqueurs de stress réplicatif sont exprimés trois jours après l'irradiation. Par ailleurs, l'analyse de la dynamique de réplication révèle une diminution de la vitesse de réplication à post-IR qui est contrecarrée par les antioxydants, suggérant qu’un stress oxydatif peut contribuer à un stress réplicatif. Enfin, par ChIP-QPCR, nous observons que les gènes impliqués dans RET/PTC1 présentent plus de cassures double brin que des gènes endogènes, et ce, trois jours après l'irradiation. Ainsi, nous proposons qu’un stress réplicatif induit par un stress oxydatif pourrait être potentiellement impliqué dans l'étiologie des tumeurs RET/PTC-positives. / Papillary thyroid cancers (PTC) are the most common endocrine tumors and account for 2-3% of all human cancers. The most relevant genetic alterations found in these tumors are mutations in the genes BRAF and RAS, and chromosomal translocations in RET, a proto-oncogene activated in 15-20% of PTCs. These oncogenic translocations, known as RET/PTCs, result from the fusion of RET with unrelated partner genes. Ionizing radiation is a major risk factor for RET/PTC formation, however, the molecular mechanisms involved in these radioinduced translocations just begun to be unveiled. In the past few years, our group has reported a critical role for reactive oxygen species (ROS) in the formation of RET/PTC in thyroid cells in vitro and has also shown that irradiation can elicit a persistent oxidative stress caused by the upregulation of the NADPH Oxidase DUOX1 that leads to DNA damage, mediating at least part of the effects of radiation. However, how could ROS lead to the formation of RET/PTC is not fully understood. Children are at significantly higher risk of developing radio-induced thyroid tumors, specially RET/PTC positive, probably due to the intense proliferation rate of their follicular thyroid cells. This epidemiological observation prompts the assumption that replication dynamics may be involved in RET/PTC formation. Indeed, it has been shown that the pharmacological induction of replicative stress can stimulate the in vitro formation of RET/PTC in thyroid cells. Thus, to investigate whether replicative stress might contribute for the long-term effects of irradiation on DNA damage and RET/PTC formation, we analyzed the effects of radiation in NTHY-ori3.1 thyroid cell lineage in terms of oxidative and replicative stress and replication dynamics. Our results confirm that irradiation triggers two waves of oxidative stress: first, a strong but transient oxidative burst takes place minutes after irradiation and next, a persistently increased oxidative stress that starts only 2 days after irradiation. These two peaks of oxidative stress lead to two peaks of DNA damage. Irradiation caused little or no effect on proliferation nor on cell cycle progression. However, several protein markers of replicative stress, such as pATR, pATM, pChk1 and pRPA are induced three days after irradiation. Moreover, replication dynamics analysis revealed a diminished replication speed that has been reversed by antioxidants, suggesting that oxidative stress may contribute to replication defects. Finally, using ChIP-qPCR, we observed that the genes involved in RET/PTC1 translocation present more double-stranded breaks than RET/PTC-unrelated genes 3 days after irradiation. Hence, we propose that replicative stress is potentially involved in the etiology of RET/PTC-positive tumors. / HECHT, Fabio. The role of reactive oxygen species in thyroid radio-carcinogenesis. Rio de Janeiro, 2018. Doctoral thesis - Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil and Université Paris-Saclay, Orsay, France, 2018.O câncer papilífero de tireoide é o tumor endócrino mais comum e corresponde a 2-3% de todos os cânceres humanos. As alterações genéticas mais relevantes relacionadas a esse tumor são mutações nos genes BRAF e RAS e translocações do gene RET, um proto-oncogene ativado em 15-20% dos tumores papilíferos. Essas translocações, conhecidas como RET/PTC, resultam da fusão de RET com diversos outros genes. A radiação ionizante é um importante fator de risco para a formação de RET/PTC, no entanto, o mecanismo molecular responsável por essa translocação radioinduzida ainda não foi elucidado. Nos últimos anos, nosso grupo demonstrou um papel crítico exercido pelas espécies reativas de oxigênio na formação de RET/PTC em células tireoidianas in vitro e também mostrou que a irradiação promove um estresse oxidativo persistente causado pelo aumento de expressão da NADPH Oxidase DUOX1, levando à dano ao DNA, mediando assim parte dos efeitos da radiação. No entanto, como o ROS leva à formação de RET/PTC ainda não é compreendido. Crianças possuem um risco significativamente mais alto de desenvolver tumores tireodianos após a irradiação, especialmente RET/PTC positivos, provavelmente em função da intensa proliferação das células tireodianas. Essa associação sugere que a replicação esteja envolvida na formação de RET/PTC. De fato, foi observado que a indução farmacológica de estresse replicativo pode estimular a formação in vitro de RET/PTC em células tireodianas. Portanto, para investigar se o estresse replicativo contribui com os efeitos da irradiação no longo prazo sobre o dano ao DNA e formação de RET/PTC, nós investigamos o papel da radiação sobre o estresse oxidativo e replicativo, além da dinâmica de replicação de linhagem de células tireodianas NTHY-ori 3.1. Nossos resultados confirmam que a irradiação desencadeia duas ondas de estresse oxidativo: primeiramente, um forte, mas transitório pico de espécies reativas de oxigênio é observado minutos após a irradiação, seguido por um novo e persistente pico que só é observado a partir de dois dias após a irradiação. Esses dois picos de estresse oxidativo resultam em dois picos de dano ao DNA. A irradiação causou pouco ou nenhum efeito na proliferação ou na progressão do ciclo celular. No entanto, vários marcadores de estresse replicativo foram observados três dias após a irradiação, como pATR, pATM, pChk1 e pRPA. Além disso, a análise da dinâmica de replicação mostrou uma diminuição na velocidade da replicação que foi revertida por antioxidantes, sugerindo que o estresse oxidativo contribui para distúrbios dos mecanismos replicativos. Por fim, utilizando ChIP-qPCR, nós observamos que os genes envolvidos na translocação RET/PTC possuem mais quebras duplas do que genes endógenos, dias após a irradiação. Portanto, propomos que o estresse replicativo está potencialmente envolvido na etiologia dos tumores RET/PTC positivos.
|
2 |
Functional and Mechanistic Consequences of Dual Oxidase 1 Suppression in Lung CancerLittle, Andrew Charles 01 January 2017 (has links)
The NADPH oxidase homolog, dual oxidase 1 (DUOX1), is an H2O2 producing transmembrane enzyme highly expressed in the airway epithelium. DUOX1-dependent redox signaling has been characterized to regulate many homeostatic processes in the lung epithelium, such as host defense, wound healing, and type II immune responses. Intriguingly, DUOX1 has been found to be suppressed in many epithelial cancers, including lung cancer, by hypermethylation of its promoter. Epigenetic silencing of DUOX1 in cancer is paradoxical to the understanding that tumors harbor elevated levels of reactive oxygen species (ROS), suggesting that DUOX1 may be a tumor suppressor.
Since DUOX1 loss occurs in many forms of lung cancer, we aimed to characterize the functional importance of DUOX1 suppression. RNAi-mediated knockdown of DUOX1 in lung epithelial cells induced features of the epithelial-to-mesenchymal transition (EMT), a characteristic of aggressive or invasive tumor cells. Indeed, DUOX1 suppression promoted the acquisition of molecular signatures associated with EMT, such as the loss of E-cadherin, and induced expression of vimentin and smooth muscle actin. Additionally, we find that DUOX1 suppression promotes the acquisition of other EMT-related features, such as enhanced levels of cancer stem cell molecular markers, cellular invasiveness, and critically, resistance to epidermal growth factor receptor (EGFR) inhibition. Importantly, overexpression of DUOX1 in DUOX1-lacking lung cancer cells promoted the recovery of epithelial characteristics, pinning DUOX1 as a critical mediator of the epithelial phenotype.
Based on prior studies demonstrating DUOX1 as an important regulator of EGFR signaling in the lung epithelium, we hypothesized that DUOX1 loss in lung cancer may impact EGFR regulation. EGFR belongs to a larger family of ErbB receptor tyrosine kinases, which are often overexpressed or mutated in many forms of lung cancer. Surprisingly, we find that lung cancer cells lacking DUOX1 have significantly altered EGFR redox regulation, specifically, kinetically enhanced cysteine oxidation-reduction dynamics. Additionally, our results demonstrate DUOX1-lacking cancer cells have altered intracellular EGFR trafficking with enhanced nuclear targeting. Indeed, we observe many oncogenic features of nuclear EGFR e.g. enhanced migratory capacity, resistance to EGFR blocking antibodies. Finally, we have uncovered that EGFR cysteine redox dynamics may regulate intracellular trafficking and/or nuclear transport, offering potentially novel avenues in the design of therapeutics.
Proper DUOX1 localization and enzymatic function in the plasma membrane requires partnership with its maturation factor, dual oxidase maturation factor 1 (DUOXA1). Preliminary findings from a newly designed DUOX1-DUOXA1 co-expression system suggests that following enzymatic activation of DUOX1, DUOXA1 dissociates from DUOX1 and potentially translocates to the nucleus, a feature not previously described in lung epithelial or cancer cells. While these preliminary results require additional experimentation, this could be a unique regulatory feature of DUOX1 and a novel role for DUOXA1.
Collectively, the research demonstrated in this dissertation characterizes the functional and mechanistic importance of DUOX1 suppression in cancer. Indeed, loss of DUOX1 expression may be an indicator of tumor aggressiveness and responsiveness to EGFR-targeted therapies, warranting its potential for use as a clinical biomarker in lung cancer.
|
Page generated in 0.0539 seconds