Spelling suggestions: "subject:"dados pesqueiros"" "subject:"lados pesqueiros""
1 |
Modelagem estatística de dados pesqueiros / Statistical modelling of fisheries dataMayer, Fernando de Pol 08 March 2019 (has links)
A flutuação na abundância de estoques pesqueiros é tema de investigação científica desde o final do século XIX. A ciência pesqueira se estabeleceu para que se pudesse compreender os impactos da exploração da pesca em recursos naturais renováveis, e, principalmente, para evitar colapsos e preservar as populações exploradas. A principal fonte de dados para investigações pesqueiras são provenientes da própria pesca. Um dos problemas associados à esse fato, é que os pescadores procuram sempre por áreas de alto rendimento, o que faz com que os dados de captura analisados sejam de uma amostra não aleatória. Além disso, entre as diversas espécies que são capturadas, algumas poucas são consideradas alvo da pescaria, enquanto que as demais são chamadas de capturas incidentais. Tudo isso faz com que dados pesqueiros possuam características particulares, como assimetria, excesso de zeros e sobredispersão. Tradicionalmente, estes dados são analisados ignorando-se a estrutura de dependência espacial e temporal, reconhecidamente importante devido a natureza das informações. O objetivo deste trabalho foi então utilizar abordagens estatísticas recentes, que são capazes de lidar com as características desafiadoras de dados pesqueiros. Inicialmente, foram utilizados modelos hierárquicos bayesianos para a modelagem da estrutura temporal da captura de uma espécie. Para esta modelagem, foi utilizado a aproximação de Laplace encaixada e integrada (INLA), um método recente na literatura para realizar inferência no contexto bayesiano através de aproximação, ao contrário dos tradicionais métodos por amostragem. Esta alternativa é computacionalmente mais eficiente, e se mostrou extremamente viável para a análise de dados pesqueiros. Ao final, pode-se concluir que a dependência temporal é de fato importante, e não pode ser ignorada nesse tipo de dado. Seguindo a mesma ideia, foi também desenvolvido um método de estimação em dois estágios para a obtenção dos parâmetros de modelos dinâmicos de biomassa. A estimação em dois estágios permite a consideração de toda a estrutura de dependência espaço-temporal presente nos dados pesqueiros. De fato, os resultados mostraram que quando estas estruturas são levadas em consideração, as estimativas dos parâmetros de interesse são não viesadas e consistentes. Abordagens multivariadas seriam escolhas naturais para a análise da captura de diversas espécies. No entanto, a maioria destas técnicas envolve a suposição de normalidade, o que praticamente torna inviável seu uso em dados de captura. Os Modelos Multivariados de Covariância Linear Generalizada (McGLM) são uma alternativa recente, pois permitem considerar que as respostas possam assumir qualquer distribuição da família exponencial de dispersão. Isso faz com que dados que possuem dependência, excesso de zeros e sobredispersão possam ser considerados de maneira natural. Neste trabalho, os McGLMs foram utilizados para se verificar a influência de um dispositivo que evita a captura incidental de aves, na captura de duas espécies consideradas alvo da pescaria. Com isso, pôde-se concluir que o artefato, comprovadamente eficiente na redução da captura de aves, não diminui a captura das espécies desejadas. / Fluctuation in abundance of fish stocks is scientifically studied since the end of the 19th century. Fisheries science was established to understand impacts of fisheries in renewable natural resources, and mainly to avoid overfishing and to preserve explored populations. The primary data source for fisheries investigation is from fisheries itself. One of the problems associated with this fact is that fishermen are always looking for high productivity areas, which makes catch data a non-random sample. In addition, among many species captured, only a few are considered targets, while the rest are called bycatch. As a consequence, fisheries data presents particular features, such as asymmetry, excess zeros, and overdispersion. It is well known that catches are highly dependent in time and space, however, this spatiotemporal structure is traditionally ignored when analyzing catch data. The aim of this work was then to apply newly developed statistical approaches, capable of handling the challenging features of fisheries data. Initially, the temporal structure of a bycatch species was modeled through Bayesian hierarchical models. The Integrated Nested Laplace Approximation (INLA), a recent method that uses approximation rather than sampling, in the Bayesian framework, was used. This approach is computationally more efficient and turned out to be a quite viable method to analyze fisheries data. As a conclusion, we showed that the temporal dependence is indeed important, and cannot be ignored when analyzing this kind of data. Following the same reasoning, a two-stage approach was developed for the estimation of parameters from biomass dyna- mic models. This two-stage approach allows the inclusion of spatial and temporal effects, inherently present in fisheries data. Results showed that when this structures are considered, parameter estimates are unbiased and consistent. Multivariate statistical methods should be the default approach when analyzing catch data from several species. However, most of this techniques are based on the normality assumption, which makes it of little use for catch data. The recently developed Multivariate Covariance Generalized Linear Models (McGLM) assumes that response variables could follow any distribution from the exponential dispersion family. This flexibility allows that data with both overdispersion and excess zeros may be modeled in a natural way. In this work, McGLMs were used to assess the influence of a device used to prevent seabird bycatch, in two target species captures. As a conclusion, we showed that the device does not interfere in the catch of targeted species.
|
Page generated in 0.0344 seconds