• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

ESCOAMENTO de Materiais Viscoplásticos: Dam Break Flow

MODOLO, A. V. F. 24 March 2017 (has links)
Made available in DSpace on 2018-08-02T00:02:59Z (GMT). No. of bitstreams: 1 tese_11317_ALAN VICTOR FERREIRA MODOLO .pdf: 4918358 bytes, checksum: 4f9210c521179af173132f3ad0f9737f (MD5) Previous issue date: 2017-03-24 / Ao longo do último século, o Dam Break Flow vem sendo estudado por muitos autores. A compreensão deste tipo de fenômeno é de grande relevância, uma vez que envolve aplicações em barragens que oferecem múltiplos benefícios para a humanidade. Porém, o rompimento de uma dessas barragens pode trazer consequências indesejáveis e imensuráveis para a sociedade e para o setor de mineração, por exemplo. Neste trabalho estamos interessados em entender como o número de Froude e as propriedades não-newtonianas, particularmente a viscoplasticidade, afetam o perfil de interface do escoamento e a distância alcançada pelo material após o Dam Break Flow. Tais resultados são comparados com o deslocamento de um fluido newtoniano. Através de uma simples abordagem experimental, uma solução de material viscoplástico ou newtoniana incialmente armazenada em um reservatório é instantaneamente liberada. As imagens do escoamento são capturadas durante o teste de duas maneiras diferentes. Uma é feita utilizando uma câmera CCD e a outra é através da Velocimetria por Imagem de Partícula. A partir das imagens obtidas pela câmera CCD, obtém-se um mapa do escoamento, com as suas respectivas velocidades, nível de líquido, formato das interfaces ar-líquido e distância percorrida pelo material são observadas. Já os resultados obtidos com o PIV, são para determinar o campo de velocidade dos momentos iniciais do Dam Break Flow para os diferentes tipos de materiais estudados. Neste trabalho, é mostrado que a plasticidade do material tem total influência sobre a distância alcançada pelo escoamento e também resultam em instabilidades ao longo do mesmo. Foi ainda identificado que o fluido viscoplástico alcança velocidades iniciais maiores que o caso newtoniano. Porém, no decorrer do escoamento, decrescem rapidamente. Quando analisado o caso viscoplástico para um leito com rugosidade, nota-se que para uma superfície lisa, há deslizamento do material de forma significativa para altos valores de plasticidade. Através da análise com PIV, foi constatado que a velocidade de frente de onda é um pouco menor do que a velocidade máxima obtida pelo escoamento. Palavras chave: Dam Break Flow, material viscoplástico, PIV, plasticidade, deslizamento.
2

Fundamental Characteristics of Fluidable Material Dam Break Flow with Finite Extent and Its Application / 流動性材料を用いた有限領域のダム破壊流れの基本特性とその応用に関する研究

Puay, How Tion 23 March 2010 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第15344号 / 工博第3223号 / 新制||工||1485(附属図書館) / 27822 / 京都大学大学院工学研究科都市社会工学専攻 / (主査)教授 細田 尚, 教授 後藤 仁志, 准教授 米山 望 / 学位規則第4条第1項該当
3

Evaluations of SWEs and SPH numerical modelling techniques for dam break flows

Pu, Jaan H., Shao, Songdong, Huang, Y., Hussain, Khalid 19 November 2014 (has links)
No / The standard shallow water equations (SWEs) model is often considered to provide weak solutions to the dam-break flows due to its depth-averaged shock-capturing scheme assumptions. In this study, an improved SWEs model using a recently proposed Surface Gradient Upwind Method (SGUM) is used to compute dam-break flows in the presence of a triangular hump. The SGUM allows the SWEs model to stably and accurately reproduce the highly complex shock currents caused by the dam-break event, as it improves the treatment of SWEs numerical source terms, which is particularly crucial for simulating the wet/dry front interface of the dam-break flow. Besides, an Incompressible Smoothed Particle Hydrodynamics (ISPH) modeling technique is also employed in this study to compare with the performance of the SGUM-SWEs model. The SPH method is totally mesh free and thus it can efficiently track the large free surface deformation. The ISPH approach uses a strictly incompressible two-step semi-implicit solution method. By reproducing a documented experimental dam-break flow, it has demonstrated that both model simulation results gave good agreement with the experimental data at different measurement locations. However, the ISPH simulations showed a better prediction of the dam-break peak wave building-up time, where its superiority was demonstrated. Furthermore, the ISPH model could also predict more detailed flow surface profiles across the streamwise flow direction and the velocity and pressure structures.
4

Numerical study of the dam-break waves and Favre waves down sloped wet rigid-bed at laboratory scale

Liu, W., Wang, B., Guo, Yakun 22 March 2022 (has links)
Yes / The bed slope and the tailwater depth are two important ones among the factors that affect the propagation of the dam-break flood and Favre waves. Most previous studies have only focused on the macroscopic characteristics of the dam-break flows or Favre waves under the condition of horizontal bed, rather than the internal movement characteristics in sloped channel. The present study applies two numerical models, namely, large eddy simulation (LES) and shallow water equations (SWEs) models embedded in the CFD software package FLOW-3D to analyze the internal movement characteristics of the dam-break flows and Favre waves, such as water level, the velocity distribution, the fluid particles acceleration and the bed shear stress, under the different bed slopes and water depth ratios. The results under the conditions considered in this study show that there is a flow state transition in the flow evolution for the steep bed slope even in water depth ratio α = 0.1 (α is the ratio of the tailwater depth to the reservoir water depth). The flow state transition shows that the wavefront changes from a breaking state to undular. Such flow transition is not observed for the horizontal slope and mild bed slope. The existence of the Favre waves leads to a significant increase of the vertical velocity and the vertical acceleration. In this situation, the SWEs model has poor prediction. Analysis reveals that the variation of the maximum bed shear stress is affected by both the bed slope and tailwater depth. Under the same bed slope (e.g., S0 = 0.02), the maximum bed shear stress position develops downstream of the dam when α = 0.1, while it develops towards the end of the reservoir when α = 0.7. For the same water depth ratio (e.g., α = 0.7), the maximum bed shear stress position always locates within the reservoir at S0 = 0.02, while it appears in the downstream of the dam for S0 = 0 and 0.003 after the flow evolves for a while. The comparison between the numerical simulation and experimental measurements shows that the LES model can predict the internal movement characteristics with satisfactory accuracy. This study improves the understanding of the effect of both the bed slope and the tailwater depth on the internal movement characteristics of the dam-break flows and Favre waves, which also provides a valuable reference for determining the flood embankment height and designing the channel bed anti-scouring facility. / National Natural Science Foundation of China (Grant No: 51879179, 52079081), the Open Fund from the State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (SKHL1809) and the Sichuan Science and Technology Program (No. 2019JDTD0007)
5

Experimental investigation on the effects of bed slope and tailwater on dam-break flows

liu, Wenjun, Wang, Bo, Guo, Yakun, Zhang, Jianmin, Chen, Yunliang 03 July 2020 (has links)
Yes / Understanding of the characteristics of dam-break flows moving along a sloping wet bed can help to timely issue flood warning and risk mitigation. In this study, laboratory experiments are carried out in a large flume for a wide range of upstream water depth, bed slopes and tailwater depth. The water level is recorded and processed to calculate the mean velocity and wave celerity. Results show that the increase of the bed slope will significantly accelerate the wave-front celerity for the downstream dry bed, while the negative wave celerity will decrease. When water depth ratio α ≥ 0.3 (defined as the ratio of initial downstream water depth over the upstream water depth of dam), there are extra negative waves propagating towards the reservoir area after the flow has developed for a period of time. When α ≥ 0.6, there are the Favre waves propagating downstream. The water level and the mean velocity fluctuate due to the influence of the extra negative waves and the Favre waves. Such fluctuant frequency increases with the increase of the water depth ratio. The empirical formulas are obtained for the celerity of the first extra negative wave and the first downstream wave. The variation of wave-front height is very similar under three bed slopes investigated in this study, while the maximum wave-front height occurs when α = 0.2. The present study broadens the understanding of the effects of the bed slope and the tailwater level on the movement of the dam-break flows. Furthermore, experimental results are also compared with some analytical solutions. The validity of the assumptions made during the development of these analytical solutions and their limitations are discussed by comparing with the experimental measurements. / The National Natural Science Foundation of China (Grant No: 51879179), the Open Fund from the State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University (SKHL1809) and Sichuan Science and Technology Program (No. 2019JDTD0007).

Page generated in 0.0437 seconds