• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

New tools for the description of intra/inter laminar coupling in laminates: experimental evidence and modeling approaches

Hu, Ping 30 October 2022 (has links)
Carbon fiber reinforced polymers (CFRP) are widely used in advanced industry, like aerospace, modern sports, and automobile. Compared to traditional metals, CFRP laminates have a higher strength to weight ratio and better corrosion resistance. Because of the heterogeneous and anisotropic behavior of CFRP laminates, their damage mechanisms include fiber/matrix debonding, diffuse matrix damage, matrix cracking, fiber breakage, and delamination. These damage mechanisms develop in different length scales and are deeply coupled with each other, especially the intra/interlaminar damage coupling. Therefore, a well understanding of intra/interlaminar damage coupling is vital for predicting integrity of laminated structures. The dissipation during delamination process includes the intrinsic (depends on local material) and extrinsic (depends on non-local structural effect) parts. The intrinsic part could be straightly calibrated through standard test, while the non-local extrinsic part is usually not fully elaborated. In this work, we will devote to fill the gap, both in experiments and simulation, which will encounter the effect of intra/inter laminar damage coupling on the extrinsic dissipation during delamination process. The non-local extrinsic dissipation is usually triggered by the intra/inter laminar damage coupling, depending the loading conditions and curing process. In this thesis, we first design a two step test (tensile-DCB) on a cross ply to quantitatively study the influence of intralaminar damage on interlaminar performance. The intralaminar damage effect has proven to be two-fold on the interlaminar performance as the preset transverse cracks could lead to fiber bridging and also local delamination. Secondly, we proposed a hybrid cohesive element to encounter the intra/interlaminar coupling in a pragmatic local way. The hybrid cohesive element not only calculate the out-of-plane separation but also the in-plane strain of the two surfaces of the interface elements, which could be used to estimate the intralaminar damage of adjacent layers. Meanwhile, the coupling damage in multidirectional delamination is also investigated through a modified double cantilever beam (DCB) test. A general hybrid cohesive element is developed, in which the influence of delamination direction on the local apparent toughness is also considered. Last but not least, we implement an experimental campaign to study the curing process effect on fiber bridging development in unidirectional mode I fracture. Through these studies, the intra/interlaminar damage coupling mechanism is better understood and the hybrid cohesive element prove its potential on simulation efficiency and robustness.
2

Modélisation numérique de l’usinage des matériaux composites à matrice polymère et fibres longues de carbone / Numerical modelling of machining long carbon fiber reinforced polymer composites

Zenia, Sofiane 11 July 2017 (has links)
La mise en œuvre des matériaux composites, fait souvent appel à des procédés d’usinage conventionnel, comme l’opération de perçage utilisée lors de l’assemblage de structures par rivetage. Ces opérations peuvent générer dans la pièce usinée différents types d’endommagement: arrachement des fibres, rupture de la matrice, délaminage intralaminaire et interlaminaire, dégradation thermique de la matrice, ce qui peut provoquer une baisse des performances mécaniques de la structure. L’objectif de la thèse est de mettre en place un modèle numérique scientifiquement rigoureux pour analyser l’usinage des composites CFRP et prédire les mécanismes d’endommagement induits par l’outil coupant. Ce modèle basé sur une loi constitutive mésomécanique combine l’effet de la chute de rigidité dans le comportement du matériau, la plasticité, l’initiation et l’évolution de l’endommagement durant le processus d’usinage. Ensuite, deux modèles 2D et 3D adoptant un schéma explicite ont été implémentés via la sub-routine VUMAT dans Abaqus. Le délaminage interplis a été pris en considération à l’aide des éléments cohésifs disponibles dans le code ABAQUS/Explicit. Ce travail a permis de reproduire de manière réaliste les opérations de coupe orthogonale et de perçage des composites CFRP en termes de processus de formation du copeau, la prédiction des forces de coupe et celle de l’endommagement induit. Ces études ont montré que l’orientation des fibres et la profondeur de coupe sont les paramètres les plus influents en coupe orthogonale tandis que pour le perçage se sont les vitesses d’avance et la géométrie des outils / The machining of composite materials is often necessary for material removal operations by cutting tools such as drilling. These operations can generate a lot of damage in the machined workpiece (fiber fracture, matrix craking, intralaminar and interlaminar delamination and thermal degradation of the matrix), which can cause a decrease of mechanical performance of the structure. The PhD thesis objective is to set up a reliable accurate model to analyze the machining of CFRP composites and to predict the different damage modes induced by the cutting tool. This model is based on a mesomechanical constitutive law combining the stiffness degradation concept into the material behavior, the plasticity, the initiation and the evolution of the damage during the machining process. Two 2D and 3D models adopting an explicit scheme were implemented in Abaqus/Explicit analysis code through the user subroutine VUMAT. Furthermore, interlaminar delamination is taken into account using the cohesive elements available in the ABAQUS / Explicit code. This work allowed to realistic numerical simulation of orthogonal cutting and drilling operations of CFRP composites in terms of chip formation process, cutting forces prediction and induced damage. These studies have shown that the fiber orientation and the depth of cut were the most influential parameters in orthogonal cutting while for the drilling process, the feed rate and the tool geometry are the most important parameters

Page generated in 0.0759 seconds