• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 7
  • 7
  • 5
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Influence de la formulation sur les propriétés en fatigue d'élastomères industriels / Influence of the formulation on the fatigue properties of elastomeric materials

Masquelier, Isaure 03 December 2014 (has links)
Cette étude concerne l’influence de la formulation sur les propriétés en fatigue des élastomères. Pour cela, douze matériaux ont été préalablement choisis de façon à ce que leur formulation soit simplifiée mais représentative de celles de matériaux industriels. La première partie de l’étude vise la description des mécanismes et des scénarios d’endommagement par fatigue, pour différents matériaux, niveaux de sollicitation et pourcentages de durée de vie. Une vaste campagne d’essais de fatigue interrompus a été menée permettant une analyse statistique de la population de défauts. Ces données ont permis d’une part de proposer des scénarios de ruine pour les différents matériaux étudiés, et d’autre part d’identifier deux types de mécanismes d’amorçage autour d’inclusions de différentes natures. La deuxième partie de l’étude vise à comprendre les mécanismes d’amorçage de fissure de fatigue. Un protocole expérimental permettant d’obtenir les champs d’énergie dissipée directement à partir des champs de température mesurés a été mis en place. Ce protocole a d’abord été développé à une échelle macroscopique et validé grâce à des simulations par éléments finis. Il a ensuite été appliqué avec succès à l’échelle des inclusions pour des cas 2D. Enfin, la troisième partie de cette étude propose un critère énergétique basé sur un protocole d’auto-échauffement permettant une détermination rapide des propriétés en fatigue. L’approche proposée utilise un critère à deux paramètres et permet de prédire la courbe de Wöhler déterministe avec une seule éprouvette, en une demi-journée d’essai et uniquement à partir de mesures thermiques. Ce critère a été validé sur une large gamme d’élastomères, et s’avère capable de rendre compte de l’influence de la gomme, du taux et du type de charges. / This study deals with the influence of the formulation on the fatigue properties of elastomeric materials. Twelve materials have been chosen so that their formulations are simplified but representative of these used in the industry. The first part of the study aims to describe the fatigue damage mechanisms and scenarios, for different materials, strain levels and fatigue life durations. A large experimental campaign of interrupted fatigue tests has been performed enabling a statistical analysis of the defects population. On one hand, these data led to propose damage scenarios for the studied materials, and on the other hand, to identify two classes of initiation mechanisms around different nature of inclusions. The second part of this study aims to better understand the fatigue crack initiation mechanisms. An experimental protocol enabling to obtain directly the dissipated energy fields from the measurement of the temperature fields has been set up. This protocol has been first developed at the macroscopic scale and validated thanks to numerical simulations. Then, it has been applied successfully at the scale of inclusions for 2D cases. Finally, the third part of this study suggests an energetic criterion based on a heat build-up protocol leading a fast determination of the fatigue properties. This approach uses a criterion with two parameters and is able to predict the deterministic Wöhler curve with one sample, in half a day and thanks to thermal measurements only. This criterion has been validated on a wide range of elastomeric materials and is able to reflect the influence of the gum, the type and the amount of carbon black.
2

Modélisation numérique de l’usinage des matériaux composites à matrice polymère et fibres longues de carbone / Numerical modelling of machining long carbon fiber reinforced polymer composites

Zenia, Sofiane 11 July 2017 (has links)
La mise en œuvre des matériaux composites, fait souvent appel à des procédés d’usinage conventionnel, comme l’opération de perçage utilisée lors de l’assemblage de structures par rivetage. Ces opérations peuvent générer dans la pièce usinée différents types d’endommagement: arrachement des fibres, rupture de la matrice, délaminage intralaminaire et interlaminaire, dégradation thermique de la matrice, ce qui peut provoquer une baisse des performances mécaniques de la structure. L’objectif de la thèse est de mettre en place un modèle numérique scientifiquement rigoureux pour analyser l’usinage des composites CFRP et prédire les mécanismes d’endommagement induits par l’outil coupant. Ce modèle basé sur une loi constitutive mésomécanique combine l’effet de la chute de rigidité dans le comportement du matériau, la plasticité, l’initiation et l’évolution de l’endommagement durant le processus d’usinage. Ensuite, deux modèles 2D et 3D adoptant un schéma explicite ont été implémentés via la sub-routine VUMAT dans Abaqus. Le délaminage interplis a été pris en considération à l’aide des éléments cohésifs disponibles dans le code ABAQUS/Explicit. Ce travail a permis de reproduire de manière réaliste les opérations de coupe orthogonale et de perçage des composites CFRP en termes de processus de formation du copeau, la prédiction des forces de coupe et celle de l’endommagement induit. Ces études ont montré que l’orientation des fibres et la profondeur de coupe sont les paramètres les plus influents en coupe orthogonale tandis que pour le perçage se sont les vitesses d’avance et la géométrie des outils / The machining of composite materials is often necessary for material removal operations by cutting tools such as drilling. These operations can generate a lot of damage in the machined workpiece (fiber fracture, matrix craking, intralaminar and interlaminar delamination and thermal degradation of the matrix), which can cause a decrease of mechanical performance of the structure. The PhD thesis objective is to set up a reliable accurate model to analyze the machining of CFRP composites and to predict the different damage modes induced by the cutting tool. This model is based on a mesomechanical constitutive law combining the stiffness degradation concept into the material behavior, the plasticity, the initiation and the evolution of the damage during the machining process. Two 2D and 3D models adopting an explicit scheme were implemented in Abaqus/Explicit analysis code through the user subroutine VUMAT. Furthermore, interlaminar delamination is taken into account using the cohesive elements available in the ABAQUS / Explicit code. This work allowed to realistic numerical simulation of orthogonal cutting and drilling operations of CFRP composites in terms of chip formation process, cutting forces prediction and induced damage. These studies have shown that the fiber orientation and the depth of cut were the most influential parameters in orthogonal cutting while for the drilling process, the feed rate and the tool geometry are the most important parameters
3

Etude du comportement mécanique et des mécanismes d'endommagement de pièces métalliques réalisées par fabrication additive / Studying the mechanical behaviour and the damaging mechanisms of metallic parts produced by additive manufacturing

Chastand, Victor 10 November 2016 (has links)
La fabrication additive est un procédé offrant de nouvelles opportunités aux industriels pour fabriquer des pièces complexes, sans outillage spécifique et en optimisant la matière utilisée.Cette thèse présente les propriétés mécaniques de pièces réalisées par fabrication additive et l’analyse des mécanismes d’endommagement associés, en ayant comme référence les propriétés mécaniques des procédés de fonderie et de corroyage. Ce type d’analyse est indispensable pour l’industrialisation du procédé.Les propriétés en traction et en fatigue, sur des éprouvettes en titane Ti-6Al-4V et en aluminium AlSi7Mg0,6, ont été mesurées. Les effets du procédé de fabrication, de la direction de fabrication, du post-usinage et des post-traitements thermiques ont été comparés. Les propriétés sont au moins au niveau de la fonderie.Ces résultats ont été analysés en corrélation avec les microstructures et les faciès de rupture, afin de dégager des mécanismes d’endommagement. Les critères permettant de mesurer la criticité des défauts ont été définis.Certaines de ces hypothèses ont pu être vérifiées grâce à des essais de traction in situ au micro tomographe. / Additive manufacturing offers new opportunities for industries to manufacture complex parts with no additional tooling and better optimization of the material used.This thesis is about the analysis of the mechanical properties and the damaging mechanisms of parts produced by additive manufacturing, using mechanical properties of casted and wrought parts as reference. This type of analysis is necessary in order to industrialize the process.The tensile and fatigue properties on Titanium Ti-6Al-4V and Aluminium AlSi7Mg0,6 were measured. The effects of the process, the manufacturing direction, the post-machining and the post-heat treatments were compared. Properties are at least at the level of casting.A correlation of these results with microstructures and fracture surfaces was made in order to extract the damaging mechanisms. A method to measure the criticity of the defects in a part was defined. Some of these hypotheses were verified using microtomographic in situ tensile tests.
4

Etude et modélisation du comportement mécanique de CMC oxyde/oxyde / Study and modelling of the mechanical behaviour of oxide/oxide CMCs

Ben Ramdane, Camélia 20 June 2014 (has links)
Les CMC oxyde/oxyde sont de bons candidats pour des applications thermostructurales. Le comportement mécanique et les mécanismes d’endommagement de deux composites alumine/alumine à renforts tissés bi- et tridimensionnels ont été étudiés et comparés. La microstructure de ces CMC à matrice faible a été caractérisée à partir de porosimétrie et de CND, tel que thermographie IR, scan ultrasonore et tomographie X, ce qui a permis de mettre en évidence la présence de défauts initiaux. Le comportement mécanique en traction, ainsi qu’en compression dansle cas du CMC à renfort bidimensionnel, dans la direction des fibres ainsi que dans la direction ±45°, aété étudié à température ambiante. Afin d’exploiter pleinement ces essais, nous avons eu recours à plusieurs méthodes d’extensométrie et de suivi d’endommagement, telles que la thermographie IR et l’émission acoustique. Les propriétés mécaniques à rupture ainsi que le module de Young du CMC à renfort bidimensionnel développé à l’Onera se sont avérées supérieures à celles disponibles dans la littérature. Les mécanismes d’endommagement des matériaux ont été déterminés à partir d’observations post mortem au MEB et d’essais in situ dans un MEB, ce qui a permis d’évaluer la nocivité des défauts initiaux. Enfin, l’étude du comportement mécanique de ces composites a permisde proposer un modèle d’endommagement tridimensionnel qui permettra de poursuivre le développement de ces matériaux grâce à du calcul de structure. A l’issue de cette thèse, des pistes d’amélioration des procédés d’élaboration et de choix d’instrumentation à utiliser pour les futures études, notamment en ce qui concerne le suivi d’endommagement, ont également été proposées. / Oxide/oxide CMCs are good candidates for thermostructural applications. Themechanical behaviour and damage mechanisms of two alumina/alumina composites with two andthree dimensional woven reinforcements were studied and compared. The microstructure of theseweak matrix CMCs was characterized by porosimetry and NDT methods, such as IR thermography,ultrasound scanning and X-ray tomography, which highlighted initial defects. The mechanicalbehaviour was studied through tensile tests, as well as compression tests in the case of the twodimensionalreinforced CMC. These tests were conducted at room temperature, in the fibres directionsand in the ±45° direction. In order to fully exploit these tests, several extensometry and damagemonitoring methods, such as IR thermography and acoustic emission, were used. Young’s moduli andmaximum stresses and strains of the two-dimensional reinforced CMC developed at Onera appearedto be higher than those available in the literature. The damage mechanisms of the materials weredetermined by post mortem SEM observations and in situ testing in a SEM, which made it possible toassess the nocivity of initial defects. Studying the mechanical behaviour of these composites finallyenabled the development of a three-dimensional damage model that will facilitate the furtherdevelopment of such materials, through finite element analysis. Finally, some improvements regardingthe manufacturing processes and the instrumentation for damage monitoring were suggested forfuture studies.
5

Mécanismes d’endommagement du polyamide-66 renforcé par des fibres de verre courtes, soumis à un chargement monotone et en fatigue : Influence de l’humidité relative et de la microstructure induite par le moulage par injection / Damage mechanisms in short glass fiber reinforced polyamide-66 under monotic and fatigue loading : Effect of relative humidity and injection molding induced microstructure

Arif, Muhamad Fatikul 25 March 2014 (has links)
Le présent travail s'appuie sur une approche expérimentale étendue visant l'identification des mécanismes d'endommagement en chargement quasi-statique et en fatigue du PA66/GF30, en prenant notamment en compte l'influence de la teneur en eau et de la microstructure induite par le moulage par injection. Les essais et les observations in situ au MEB mettent en exergue le rôle déterminant de l'humidité relative sur l'initiation, le niveau et la chronologie de l'endommagement. Une analyse par micro-tomographie aux rayons X sur des échantillons ayant subi un chargement de fatigue montre que l'endommagement augmente continuellement et progressivement au cours de la fatigue, et plus significativement dans la deuxième moitié de sa durée de vie. Les résultats obtenus en quasi-statique et en fatigue révèlent des mécanismes d'endommagement similaires, notamment une décohésion des interfaces fibre/matrice. Une chronologie générale de l'endommagement est établie. Celui-ci s'initie en extrémités de fibres ou plus globalement là où les fibres sont relativement proches les unes des autres. Il s'ensuit des décohésions interfaciales se propageant le long des fibres. A une contrainte en flexion plus élevée, des microfissures de la matrice peuvent apparaître et se propager par coalescence, ce qui aboutira à la rupture. Ces résultats expérimentaux permettent d'alimenter une modélisation multi-échelles de l'endommagement à fort contenu physique. Celle-ci contribuera alors à une prédiction pertinente de l'endommagement dans les thermoplastiques renforcés pour application automobile. / The current work focuses on extensive experimental approaches to identify quasi-static and fatigue damage behavior of PA66/GF30 considering various effects such as relative humidity and injection process induced microstructure. By using in situ SEM tests, it was observed that relative humidity conditions strongly impact the damage mechanisms in terms of their initiation, level and chronology. The X-ray micro-tomography analysis on fatigue loaded samples demonstrated that the damage continuously increases during fatigue loading, but the evolution occurs more significantly in the second half of the fatigue life. From the results of damage investigation under quasi-static and fatigue loading, it was established that both loading types exhibit the same damage mechanisms, with fiber/matrix interfacial debonding as the principal damage mechanisms. General damage chronologies were proposed as the damage initiates at fiber ends and more generally at locations where fibers are relatively close to each other due to the generation of local stress concentrations. Afterwards, interfacial decohesions further propagate along the fiber/matrix interface. At high relative flexural stress, matrix microcracks can develop and propagate, leading to the damage accumulation and then the final failure. The experimental findings are important to provide a physically based damage mechanisms scenarios that can be integrated into multiscale damage models. These models will contribute towards reliable predictions of damage in reinforced thermoplastics for lightweight automotive applications.
6

Contribution à la compréhension des mécanismes de vieillissement hydrothermique de matériaux composites unidirectionnels polyester insaturé/fibre de lin / Understanding the hydrothermal aging mechanisms of unsaturated polyester-reinforced flax fiber unidirectional composites

Rouch, Matthias 19 April 2018 (has links)
De nombreux exemples de matériaux composites obtenus par l’association de fibres végétales et de polymères ont permis des allègements conséquents de structures dans divers domaines d’application. Cependant, la question demeure quant de la durabilité de ces pièces en service, essentiellement par manque de connaissances sur le vieillissement des fibres végétales, sur leurs interactions avec la matrice polymère et sur le comportement hydrothermique des composites biosourcés au cours du temps. Dans cette étude, nous avons étudié les cinétiques et mécanismes de sorption du matériau composite afin d’appréhender son comportement hydrique lors des vieillissements hydrothermiques par immersion dans l’eau à 23°C et 70°C. Cette étude a mis en évidence l’influence des fibres végétales sur les grandeurs caractéristiques de l’absorption en eau du matériau composite : forte prise en eau, gonflement anisotrope. Elle a également permis l’identification des mécanismes de dégradation des fibres de lin ; le rôle très nocif des résidus d’écorce rappelle l’importance du rouissage et du défibrage sur les performances de ces fibres. L’étude du comportement des constituants et du composite confrontés à des vieillissements hydrothermiques a ensuite été entreprise afin d’identifier et quantifier l’influence de chacun des matériaux constitutifs, ainsi que leur synergie. Il en ressort que la détérioration des fibres de lin est la principale cause de l’abattement des propriétés mécaniques du matériau composite. Si une immersion à 23°C pendant 70 jours n’a que peu d’effet sur les propriétés mécaniques, l’élévation de la température à 70°C induit des endommagements importants dès 14 jours d’immersion. La destruction des parois cellulaires et la dégradation des interfaces fibre/matrice sous l’effet de la présence d’eau détériorent le transfert de charge matrice/fibre. La corrélation entre les vieillissements accélérés et naturel a fait ressortir une similitude entre le maintien pendant 70 jours dans l’eau à 23°C et l’exposition aux conditions naturelles pendant 24 mois ; l’immersion à 70°C s’avère trop sévère. Une solution d’amélioration serait d’accentuer le rouissage des fibres afin de supprimer davantage les composés pectiques de la lamelle mitoyenne et de la paroi primaire. L’élimination de ces composés facilement hydrolysables par l’eau permettrait de prétendre à une meilleure qualité de l’interface fibres/matrice tout au long du vieillissement. / A great number of plant fiber – reinforced polymer composites allowed substantial lightening of structures in various fields of application. However, the question remains about the durability of these parts in service, mainly for lack of knowledge about the aging of plant fibers, their interactions with the polymer matrix and the hydrothermal behavior of biosourced composites over time. In this work, water absorption mechanisms and kinetics by the composite material are studied in order to understand the hydric behavior during hydrothermal aging by immersion in deionized water at 23°C or 70°C. The results show that water absorption by the composite is characterized by a high water uptake and an anisotropic swelling. It also allowed the identification of the degradation mechanisms of flax fibers; the very harmful role of bark residues recalls the importance of retting and decortication on the performance of these fibers.The investigation of the behaviors of the constituents and the composite under hydrothermal aging was then undertaken with the aim to identify and quantify the influence of each on the constituent materials, as well as their synergy. It shows that the deterioration of the flax fibers is the main cause of the reduction of the mechanical properties of the composite. If immersion at 23 ° C for 70 days has little effect on the mechanical properties, raising the temperature to 70 ° C induces significant damage from 14 days of immersion. The destruction of the cell walls and the degradation of the fiber/matrix interfaces due to water deteriorate the load transfer efficiency by the fiber/matrix interface. The correlation between accelerated and natural aging showed a similarity between holding for 70 days in water at 23 ° C and exposure to natural conditions for 24 months; immersion at 70 ° C is too severe. An improvement solution would be to increase the retting of the fibers in order to further remove the pectic compounds from the middle lamella and the primary wall. The elimination of these compounds easily hydrolysable by water would claim to a better quality of the fiber / matrix interface throughout aging.
7

Conception et optimisation des matériaux et structures composites pour des applications navales : effet du slamming / Design and optimisation the composite material structures for naval applications : effects of slamming

Al-Dodoee, Omar Hashim Hassoon 28 June 2017 (has links)
L'interaction fluide-structure vise à étudier le contact entre un fluide et un solide. Ce phénomène est très présent lors de l’impact d’une vague sur une structure ou l’inverse. La réponse de la structure peut être fortement affectée par l'action du fluide. L'étude de ce type d'interaction est motivée par le fait que les phénomènes résultants sont parfois catastrophiques pour les structures composites ou constituent dans la majorité des cas un facteur dimensionnant important. Le fluide est caractérisé par son champ de vitesse et de pression. Il exerce des forces aérodynamiques ou hydrodynamiques sur l'interface de la structure qui subit des déformations sous leurs actions. Ces déformations peuvent affecter localement le champ de l'écoulement et donc les charges appliquées. Ce cycle des interactions entre le fluide et le solide est caractéristique du phénomène de slamming. Pour une conception optimale des structures marines, la vitesse du navire est devenue un paramètre important. Par conséquent, les exigences de conception ont été optimisées par rapport au poids structurel. D'autre part, l'apparition des structures composites au cours des dernières décennies a favorisé l'exploitation de ces matériaux dans les grands projets de construction pour les applications marines et aérospatiales. Ceci est dû à la nature de leurs propriétés mécaniques, car elles présentent un rapport rigidité / poids élevé. En revanche, l'interaction entre les structures déformables et la surface libre de l'eau peut affecter le flux du fluide en contact avec la structure ainsi que et les charges hydrodynamiques estimées par rapport au corps rigide, en raison de l'apparition des effets hydro-élastiques. En outre, ces structures sont toujours soumises à des mécanismes de dommages différents et complexes sous un chargement dynamique. Pour ces raisons, la flexibilité et les modes de défaillance dans les matériaux composites présentent une complexité supplémentaire pour prédire les charges hydrodynamiques lorsqu'il y a une interaction avec un fluide (l'eau). Ceci a présenté un défi majeur pour utiliser ces matériaux dans les applications maritimes. Par conséquent, une attention particulière doit être accordée dans la phase de conception et l'analyse des performances pendant l'utilisation à vie. Les principales contributions de ce travail sont l’étude expérimentale et numérique du comportement dynamique des panneaux composites et la quantification de l'effet de la flexibilité de ces panneaux composites sur les charges hydrodynamiques et les déformations résultantes. Pour étudier ces effets, des panneaux composites stratifiés et sandwichs avec deux rigidités différentes sont soumis à diverses vitesses d'impact à l'aide d'une machine de choc équipée d'un système de contrôle de la vitesse. La résistance dynamique a été analysée en termes de charges hydrodynamiques, de déformations dynamiques et de mécanismes de défaillance pour différentes vitesses d'impact. L'analyse des résultats expérimentaux a montré que l’effort maximal augmente avec l’augmentation de la flexibilité des panneaux. D'autre part, le modèle numérique de tossage a été implémenté dans le logiciel Abaqus / Explicit basé sur l'approche du modèle Couplé Euler Lagrange (CEL). En outre, différents modes de défaillance des matériaux composites ont été développés et implémentés à l'aide d'une subroutine « VUMAT » définie par l'utilisateur et mis en œuvre dans le code de calcul éléments finis. Pour couvrir tous les modes de défaillance possibles dans les structures composites, l’implémentation de l’endommagement comprend : la rupture intralaminar, la décohésion de l'interface peau / âme et le cisaillement de l’âme. La confrontation des résultats expérimentaux avec les modèles numériques sur la prédiction de la force hydrodynamique et de la déformation du panneau valide l’approche adoptée. / Generally, when marine vessels encounter the water surface on entry and subsequently re-enter the water at high speed (slamming), this can subject the bottom section of the vessels to both local and global effects and generate unwanted vibrations in the structure, especially over very short durations. In marine design, the vessel speed has become an important aspect for optimal structure. Therefore, design requirements have been optimized in relation to the structural weight. In other hand, the appearance of the composite structures in the last decades has encouraged the exploitation of these structures in major construction projects for lightweight marine and aerospace applications. This is due to the nature of their mechanical properties which shows a high stiffness-to-weight ratio. In contrast, the interaction between deformable structures and free water surface can be modified the fluid flow and changed the estimated hydrodynamic loads comparing with rigid body, due to appearance of hydroelastic effects. Moreover, these structures are always subject to different and complex damage mechanisms under dynamic loading. For these reasons, the flexibility and the damage failure modes in composite materials introduce additional complexity for predicting hydrodynamic loads when interactive with water. This considered a key challenge to use these materials in marine applications. Therefore, special attention must be taken in the design phase and the analysis of performances during lifetime use. The main contributions of this work are the experimental and numerical study of the dynamic behavior of composite panels and the quantification of the effect of the flexibility of these structures on the hydrodynamic loads and the resulting deformations. To study these effects, laminate composite and sandwich panels with two different rigidities and subjected to various impact velocities have been investigated experimentally using high speed shock machine with velocity control system. The dynamic resistance was analysed in terms of hydrodynamic loads, dynamic deformation and failure mechanisms for different impact velocities. The general analysis of experiment results were indicated that more flexible panel has a higher peak force as velocity increases compared with higher stiffness panels. On the other hand, the slamming model was implemented in Abaqus/Explicit software based on Coupled Eulerian Lagrangian model approach (CEL). In addition, different damage modes are developed and constructed using a user-defined material subroutine VUMAT and implemented in Finite element method, including the intralaminar damage, debonding in skin/core interface, and core shear to cover all possible damage modes throughout structures. The numerical model gave a good agreement results in judging with experimental data for prediction of the hydrodynamic force and panel deformation. Additionally, this study gives qualitative and quantitative data which provides clear guidance in design phase and the evolution of performances during lifetime of composite structures, for marine structure designers.

Page generated in 0.1096 seconds