• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 4
  • Tagged with
  • 10
  • 10
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Une Méthode d'optimisation appliquée aux structures composites /

Girard, Raoul. January 1974 (has links)
Thèse 3 cycle--Sc. phys.--Paris-Sud, 1973. / Bibliogr. p. 74-75.
2

Static and Fatigue Failure of Bolted Joints in Hybrid Composite-Aluminium Aircraft Structures

Kapidzic, Zlatan January 2015 (has links)
The use of fibre composites in the design of load carrying aircraft structures has been increasing over the last few decades. At the same time, aluminium alloys are still present in many structural parts, which has led to an increase of the number of hybrid composite-aluminium structures. Often, these materials are joined at their interface by bolted connections. Due to their different response to thermal, mechanical and environmental impact, the composite and the aluminium alloy parts are subject to different design and certification practices and are therefore considered separately.The current methodologies used in the aircraft industry lack well-developed methods to account for the effects of the mismatch of material properties at the interface.One such effect is the thermally induced load which arises at elevated temperature due to the different thermal expansion properties of the constituent materials. With a growing number of hybrid structures, these matters need to be addressed.  The rapid growth of computational power and development of simulation tools in recent years have made it possible to evaluate the material and structural response of hybrid structures without having to entirely rely on complex and expensive testing procedures.However, as the failure process of composite materials is not entirely understood, further research efforts are needed in order to develop reliable material models for the existing simulation tools. The work presented in this dissertation involves modelling and testing of bolted joints in hybrid composite-aluminium structures.The main focus is directed towards understanding the failure behaviour of the composite material under static and fatigue loading, and how to include this behaviour in large scale models of a typical bolted airframe structure in an efficient way. In addition to that, the influence of thermally induced loads on the strength and fatigue life is evaluated in order to establish a design strategy that can be used in the industrial context. The dissertation is divided into two parts. In the first one, the background and the theory are presented while the second one consists of five scientific papers.
3

Contrôle de forme de passerelle composite

Jülich Saavedra, Amelia Saskia 12 1900 (has links) (PDF)
Ce travail de thèse propose un système de contrôle pour sécuriser et rigidifier une passerelle en composite verre et carbone. La passerelle autocontrainte se compose d'un double arc porteur, flambé élastiquement à partir de tubes rectilignes et stabilisé par deux câbles et des haubans croisés. Un tablier est posé sur des barres reliées aux câbles et haubans. Une étude Elements Finis identifie les points faibles de la passerelle. La stratégie de contrôle, basée sur des formes d'équilibre, répond à la fragilité des composites en uniformisant les forces dans les éléments de tension et à la souplesse en minimisant le déplacement vertical du tablier. Différentes géométries d'isoforce, avec forces uniformes dans les câbles et haubans, peuvent être déterminées avec la Méthode de la Densité de Force. Parmi les géométries d'isoforce, la géométrie cible d'un chargement a un déplacement minimal du tablier. On obtient une structure intelligente en adaptant interactivement la force des haubans.
4

Etude expérimentale et numérique du procédé d'assemblage par fixations aveugles dans des structures composites / Experimental and numerical study of blind fasteners into composite structures

Adam, Louis 20 September 2011 (has links)
Dans une démarche de « Virtual Testing » au sein du projet européen MAAXIMUS, cettethèse se focalise sur l’étude de fixations aveugles aéronautiques au sein d’assemblages composites.Par le biais d’une étude expérimentale et numérique, le comportement mécaniquede plusieurs références de fixations est étudié sous différentes sollicitations (traction statiqueet fatigue, simple cisaillement, pull-through). Les principaux facteurs influents sontainsi dégagés. L’installation d’un type de fixation pris comme référence est correctementreproduite en simulation grâce à l’utilisation de lois matériau élastoplastiques et de critèresd’endommagement. Le comportement hors-plan de stratifiés est modélisé en faisant appelà l’alliance d’éléments volumiques et cohésifs, permettant de reproduire le scénariod’endommagement, et en particulier le couplage fissuration/délaminage. Cette démarchepourrait être élargie aux autres fixations étudiées et au Virtual Testing d’assemblages. Lesessais numériques permettraient de réduire considérablement le coût de développementdes fixations aveugles et seraient un outil essentiel pour leur optimisation / In the frame of the European project MAAXIMUS, aiming at decreasing the developmenttime and cost of a highly-optimized composite fuselage, this thesis focuses on “VirtualTesting”, applied to aeronautical blind fasteners into composite structures. Thanks toan experimental and numerical study, the mechanical behaviour of several fasteners havebeen studied under several loading cases (static and fatigue tensile tests, lap joint shearand pull-through tests), pointing out the main influential parameters. The numerical analysisof the installation is performed on one reference, being assumed that the method canbe enlarged to other fasteners. Installation sequence is well foreseen, both qualitatively (interms of sleeve shape and impact on the assembly) and quantitatively (in terms of preloadand influence of the grip). Out-of-plane behaviour of laminates is simulated, thanks to advanceddamage modelling using cohesive elements to account for the coupling betweenmatrix cracking and delamination. Damage scenario and structural failure are well foreseen,increasing existing knowledge on this type of loading. The combination of installationmodel and out-of-plane laminate modelling can now enable application of Virtual Testingon other mechanical tests to reduce development costs. Optimisation of blind fasteners is asecond path of study that could lead to a great decrease of assembly time by an increasedautomation
5

Optimisation en Rigidité et Résistance de l'Anisotropie distribuée pour Structures Stratifiées

Catapano, Anita 04 June 2013 (has links) (PDF)
Cette thèse porte sur le développement d'une nouvelle stratégie pour l'analyse et la conception optimale de structures anisotropes par rapport à la rigidité et à la résistance. Nous considérons des structures avec une géométrie donné et caractérisés par un champ de rigidité et de résistance anisotropes et variables. Le travail a été divisé en trois parties. Dans la première partie nous présentons les différents concepts et instruments utilisé pour développer la recherche. Dans la deuxième partie nous proposons une formulation invariante, à travers la méthode polaire, de différents critères de rupture polynomiaux pour matériaux orthotropes. Cette formulation invariante a été utilisée, ensuite, pour résoudre le problème de déterminer l'orientation optimale de plis orthotropes afin de maximiser leur résistance. Dans la dernière partie de la thèse nous abordons le problème de la conception optimale de structures stratifiés. Notre approche est inspiré par une stratégie à deux étapes déjà existent pour la seule maximisation de la rigidité. Dans la première étape de la stratégie nous avons déterminé (à l'aide de trois algorithmes) la distribution optimale des paramètres matériaux d'une structure ayant géométrie donnée. Dans la deuxième étape nous avons résolu le problème de déterminer un empilement qui satisfait à la distribution optimale des paramètres matériaux trouvé à l'étape précédente. Pour ce qui concerne la première étape nous avons défini un nouveau critère de rupture par invariants valable pour un stratifié modelé comme une plaque homogène équivalente. Après, conscientes d'avoir deux fonctionnels à minimiser, l'énergie complémentaire pour maximiser la rigidité et l'indice de résistance du critère développé pour maximiser la résistance, nous avons formalisé le problème d'optimisation à travers une minimisation séquentielle des deux fonctionnels. Concernant la deuxième étape, nous avons utilisé une approche polaire-génétique pour le problème de conception du stratifié avec une phase de vérification sur la rupture du premier pli.
6

Prise en compte de la variabilité dans les calculs par éléments finis des structures composites en régime statique ou vibratoire / Variability of composite structures modeled by finite elements in static or vibratory behavior

Yin, Qi 03 November 2016 (has links)
La fabrication des structures composites conduit à une variabilité élevée de ses paramètres mécaniques. La thèse a comme objectif global de développer des méthodes économiques et robustes pour étudier la variabilité de la réponse statique ou dynamique des structures composites modélisées par éléments finis, prenant en compte les propriétés matériaux (modules d'élasticité, coefficients de Poisson, masses volumiques...) et physiques (épaisseurs et orientations des fibres) incertaines. Deux méthodes stochastiques : Certain Generalized Stresses Method (CGSM) et Modal Stability Procedure (MSP), sont développées. La méthode CGSM considère une hypothèse mécanique, les efforts généralisés sont supposés indépendants des paramètres incertains. Elle permet d'évaluer la variabilité de la réponse statique. La méthode MSP, proposée pour étudier la variabilité d'une structure en dynamique, est basée sur l'hypothèse considérant que les modes propres sont peu sensibles aux paramètres incertains. Les hypothèses mécaniques et une unique analyse par éléments finis permettent de construire un méta-modèle exploité dans une simulation de Monte Carlo. Le coût de calcul de ces méthodes stochastiques est donc réduit considérablement. De plus, elles présentent les avantages de ne pas limiter le nombre de paramètres incertains ou le niveau de variabilité d'entrée, et d'être compatibles avec tout code éléments finis standard. Quatre exemples académiques de plaque et coque composite sont traités avec la méthode CGSM, deux exemples académiques de plaque composite carrée et un exemple de plaque raidie sont traités avec la méthode MSP. La variabilité de la réponse statique (déplacement et critère de rupture) et dynamique (fréquence propre), soit la moyenne, l'écart-type, le coefficient de variation et la distribution, est évaluée. Les résultats statistiques obtenus par les méthodes proposées sont comparés avec ceux obtenus par une simulation de Monte Carlo directe, considérée comme la méthode de référence. La comparaison montre que les méthodes développées fournissent des résultats de bonne qualité et qu'elles sont très performantes en temps de calcul. Un indicateur d'erreur est également proposé, permettant de donner une estimation du niveau d'erreur des résultats obtenus par les méthodes CGSM ou MSP par rapport à la méthode de référence, sans réaliser un grand nombre d'analyses par éléments finis. / The manufacture of composite structures leads to a high variability of mechanical parameters. The objective of this work is to develop economic and robust methods to study the variability of the static or dynamic response of composite structures modeled by finite elements, taking into account uncertain material (elastic moduli, Poisson's ratios, densities... ) and physical (thicknesses and fiber orientations) properties. Two methods are developed: the Certain Generalized Stresses Method (CGSM) and the Modal Stability Procedure (MSP). The CGSM considers a mechanical assumption, the generalized stresses are assumed to be independant of uncertain parameters. lt allows to evaluate the variability of static response. The MSP, proposed to study the variability of structures in dynamics, is based on the assumption that the modes shapes are insensitive to uncertain parameters. These mechanical assumptions and only one fïnite element analysis allow to construct a metamodel used in a Monte Carlo simulation. As a result, the computational cost is reduced considerably. Moreover, they are not limited by the number of considered parameters or the level of input variability, and are compatible with standard finite element software. Four academic examples of composite plate and shell are treated with the CGSM, while two academic examples of composite square plate and an example of stiffened plate are studied by the MSP. The variability of static response (displacement and failure criterion) and dynamic response (natural frequency), namely mean value, standard deviation, coefficient of variation and distribution, is evaluated. The results obtained by the proposed methods are compared with those obtained by the direct Monte Carlo simulation, considered as the reference method. The comparison shows that the proposed methods provide quite accurate results and highlights their high computational efficiency. An error indicator is also proposed, which allows to provide an estimation of the error level of the results obtained by the CGSM or MSP compared to the reference method, without performing a large number of finite element analyses.
7

Modélisation et caractérisation de matériaux actifs pour la conception de dispositifs magnéto-électriques

Galopin, Nicolas 11 December 2007 (has links) (PDF)
La thèse porte sur la caractérisation expérimentale et la modélisation de matériaux à magnétostriction géante et sur leur association avec des matériaux piézoélectriques. Une plateforme de caractérisation dédiée à l'étude du couplage magnéto-mécanique a été réalisée. Cette plateforme permet la création dans un échantillon ferromagnétique massif d'une zone homogène de sollicitations magnétique et mécanique. Une instrumentation adaptée mesure la réponse magnéto-mécanique de l'échantillon à ces sollicitations. Cette plateforme a été utilisée pour caractériser le comportement d'échantillons de Terfenol-D, un matériau à magnétostriction géante. Les résultats obtenus montrent notamment la très forte influence de la contrainte appliquée sur le comportement magnétique et sur la déformation de magnétostriction du matériau.<br />Un modèle de couplage manéto-élastique, s'appuyant sur la définition de coefficients de couplage thermodynamique, est proposé pour décrire le comportement anhystérétique du Terfenol-D. A partir de la minimisation d'une fonctionnelle d'énergie, les formulations éléments finis relatives aux problèmes magnéto-élastique et électro-élastique sont établies. La formulation éléments finis du problème magnéto-électrique est ensuite obtenue par couplage des deux problèmes. Quelques applications sont enfin abordées, notamment celle de structures composites magnéto-électriques associant des couches magnétostrictives à des couches piézoélectriques. L'étude de ces structures composites met en avant l'intérêt d'une telle association de matériaux actifs.
8

Éléments finis spéciaux pour l’analyse linéaire et non-linéaire géométrique des structures composites à renforts fibreux / Special finite elements for linear and geometricaly non linear analysis of fiber reinforced composite structures

Tiar, Mohamed Amine 29 March 2017 (has links)
La modélisation numérique des structures composites à renfort fibreux de géométrie complexe constitue un axe de recherche majeur afin de prédire correctement leur comportement mécanique. Dans ce contexte, l’étude menée dans ce travail de thèse porte sur le développement de nouveaux éléments finis basés sur une approche numérique multi-échelle, appelée Approche de la Fibre Projetée (AFP). Cette approche a l’avantage de tenir compte de la présence des fibres au sein d’un espace matrice sans les discrétiser, ce qui limite considérablement la taille du système à résoudre. Pour analyser le comportement des structures composites, plusieurs éléments finis 2D et 3D ont été développés et implémentés dans le code ABAQUS via la routine UEL. Plusieurs cas tests de validation sont considérés pour tester la précision et l’efficacité des éléments finis proposés et les résultats obtenus sont globalement en bon accord avec les solutions de référence. De plus, l’intérêt de la nouvelle approche (AFP) est particulièrement mis en exergue en étudiant des structures composites complexe à renfort 3D : une plaque sandwich cousue et une plaque sandwich à âme creuse renforcée par des fibres en forme de « 8 ». / Numerical modeling of composite materials and structures with complex geometry of fiber reinforcement, such as stitched composites, constitutes a major research axis in order to correctly predict their mechanical behavior. Within this context, this study focuses on the development of new linear and nonlinear specific finite elements based on a multiscale numerical approach, called the Projected Fiber Approach (PFA). This numerical approach has the advantage of taking into account the presence of fi bers, long or short and distributed randomly or specifically, within a matrix space without discretizing them. Consequently, the obtained system of equations size is equivalent to that without reinforcement (matrix), which considerably reduces the computational cost. To analyze the linear and geometrically nonlinear behaviors of composite structures, two membrane finite elements, named PFT3 and PFQ4, and a 3D solid finite element, named PFH8, were developed and implemented into the commercial finite element code ABAQUS via the user element subroutine (UEL). Several numerical linear and nonlinear tests are considered to assess the accuracy and efficiency of the proposed composite finite elements, and the obtained results are globally in good agreement with the reference solutions. Moreover, the major interest of the PFA approach is particularly emphasized by studying two 3D complex reinforced composite structures: a stitched sandwich plate and a hollow core sandwich plate reinforced by "8" shape fibers.
9

Development of a low-cost in-situ material characterization method and experimental studies of smart composite structures / Développement d'une méthode de caractérisation de matériaux in situ à faible coût et études expérimentales de structures composites intelligentes

Chen, Xianlong 12 March 2019 (has links)
Les structures composites intégrant des transducteurs piézoélectriques au cœur de la matière sont utilisées pour leur capacité à modifier leurs propriétés mécaniques en fonction de l’environnement, à contrôler leur intégrité structurale et à interagir avec l’homme ou avec d’autres structures.Ce travail se concentre sur les phases de conception préliminaire des structures composites intelligentes. Ces phases ne représentent que 5% du coût total d’un projet, mais conditionnent 80% du coût final du produit. Les principaux problèmes rencontrés lors de ces phases de conception préliminaire portent sur la détermination des propriétés matériau des transducteurs piézoélectriques et des matériaux composites utilisés, de l'influence de l'emplacement des transducteurs dans la structure ainsi que de l’influence du processus de fabrication, de la température et des endommagements sur le comportement final des structures composites intelligentes.Dans le processus de fabrication développé à l’Université de Technologies Belfort-Montbéliard (UTBM), l’élément-clé est un produit semi-fini appelé “soft layer”. Cette couche permet d’intégrer le réseau de transducteurs piézoélectriques au cœur de la structure composite. Le processus de fabrication de la “soft layer” ainsi que celui des structures intelligentes sont abordés dans cette thèse.Afin de trouver des solutions aux problèmes décrits ci-dessus, deux méthodes de caractérisation de composites intelligents ou adaptatifs sont présentées et utilisées : la méthode dite Resonalyser et la méthode du temps de vol. Après des études expérimentales et une comparaison des résultats obtenus, la méthode du temps de vol a été choisie comme méthode principale en raison de son faible coût de mise en œuvre et du fait qu’il s’agit d’une méthode de caractérisation in-situ. De plus, une nouvelle méthode appelée méthode CMB, basée sur la méthode du temps de vol a été développée afin de pouvoir facilement et rapidement extraire les constantes élastiques, en particulier le coefficient de Poisson.Des analyses expérimentales de sensibilité appliquées aux composites adaptatifs ont été effectuées.Premièrement, l’étude de l’influence de l’emplacement des transducteurs démontre qu’il est nécessaire de tenir compte de la position de la “soft layer” dans la modélisation du comportement de produit final. La position de cette couche dans l’épaisseur du produit a une influence notable sur les fréquences propres ainsi que les amplitudes modales de la structure. Cependant, l’ajout de la “soft layer” n’accroît pas le taux d’amortissement de la structure finale; et sa position dans l’épaisseur n’a aucune influence sur ce taux d’amortissement. La propagation des ondes de Lamb à l’intérieur du composite n’est pas impactée par le “soft layer”.Deuxièmement, l’étude de l’impact du processus de la fabrication nous renseigne sur l’influence notable des divers paramètres de réglage du processus de fabrication sur le comportement final de la structure composite intelligente.Troisièmement, l’étude de l’influence de la température sur des structures constituées de différents matériaux composites montre que le module de Young du produit final décroît quand la température augmente. Mais la diminution du module de Young en fonction de la température est différente selon les et les types de matériaux et les directions des fibres, en particulier pour les structures composites unidirectionnelles. De plus, cette étude montre également la sensibilité de la méthode du temps de vol vis-à-vis de la température. Ce dernier point est par ailleurs consolidé par la comparaison avec des résultats obtenus par une méthode de caractérisation ex-situ standard : l'analyse dynamique de la mécanique (DMA).Enfin, l'étude de l'impact des dommages mécaniques fournit une assez bonne référence pour les recherches futures. De cette façon, il est clair qu’une méthode de temps de vol peut être utilisée dans la surveillance de la santé structurale. / The composite structures embedding piezoelectric implants are developed due to their abilities of modifying mechanical properties according to the environment, of keeping their integrity, of interacting with human beings or with other structures.This study is focused on the preliminary design stages of smart composite structures, which represent only 5% of the total costs of a project, whereas 80% of the life cycle cost are set during the preliminary study phases. The top few problems during the preliminary design of smart composite structures are addressed in this work such as the determination of the material properties of the piezoelectric transducers and composite material used, the influence of transducers location, manufacturing process, temperature and damage on the behavior of the smart composite structures.Due to the manufacturing process developed at the Université de Technologie de Belfort-Montbéliard (UTBM), the most important element is a semi-finished product called “soft layer”. This special layer is used to embed the transducers system into the composite structures. The manufacturing process of “soft layer” as well as the smart composite structures are compiled in this report.In order to solve the problems described above, two characterization methods of composite material (Resonalyser method and Time-of-Flight method (T-o-F method)), are introduced and discussed. After experimental studies and comparing the results of these two methods, the T-o-F method is chosen as the main method for the following studies due to the fact that it is a low-cost and in-situ characterization method. Furthermore, a new method based on the T-o-F method is developed to easily and quickly extract the elastic constants, in particular the Poisson’s ratio.Experimental sensitivity analyses applied to the smart composite structures are performed with respect to the problems describes above. First of all, the study of the influence of transducers location demonstrates that the "soft layer” cannot be neglected to model the behavior of the final product. In particular, the through-the-thickness position has an influence on the eigenfrequencies and the modal amplitudes. However, the "soft layer” does not increase the overall damping ratio of the final structures and the through-the-thickness position of the "soft layer” has no influence on the damping ratios. The Lamb wave propagation inside the composite material is not impacted by the "soft layer”. Secondly, the study of the impact of manufacturing process demonstrates that the impact of variability of parameters due to the manufacturing process is very important on the final response of the structure. Thirdly, the study of the influence of temperature on different kinds of smart composite structures proves that when temperature increases, the Young’s modulus of the smart composites decreases. But the attenuation of Young’s modulus according to temperature is different along different fiber directions, especially for the unidirectional composite structures. Furthermore, in this study, the sensitivity of Time-of-Flight method with respect to temperature is well proved by comparing the results with a traditional method like Dynamic-Mechanical Analysis (DMA). Last but not least, the study of the impact of the mechanical damage gives a quite good reference for the future investigations. Along this way, it is possible to use a Time-of-Flight method in Structural Health Monitoring. In addition, some smart composite structures manufactured by the research team are given and their potential applications are discussed.
10

Conception et optimisation des matériaux et structures composites pour des applications navales : effet du slamming / Design and optimisation the composite material structures for naval applications : effects of slamming

Al-Dodoee, Omar Hashim Hassoon 28 June 2017 (has links)
L'interaction fluide-structure vise à étudier le contact entre un fluide et un solide. Ce phénomène est très présent lors de l’impact d’une vague sur une structure ou l’inverse. La réponse de la structure peut être fortement affectée par l'action du fluide. L'étude de ce type d'interaction est motivée par le fait que les phénomènes résultants sont parfois catastrophiques pour les structures composites ou constituent dans la majorité des cas un facteur dimensionnant important. Le fluide est caractérisé par son champ de vitesse et de pression. Il exerce des forces aérodynamiques ou hydrodynamiques sur l'interface de la structure qui subit des déformations sous leurs actions. Ces déformations peuvent affecter localement le champ de l'écoulement et donc les charges appliquées. Ce cycle des interactions entre le fluide et le solide est caractéristique du phénomène de slamming. Pour une conception optimale des structures marines, la vitesse du navire est devenue un paramètre important. Par conséquent, les exigences de conception ont été optimisées par rapport au poids structurel. D'autre part, l'apparition des structures composites au cours des dernières décennies a favorisé l'exploitation de ces matériaux dans les grands projets de construction pour les applications marines et aérospatiales. Ceci est dû à la nature de leurs propriétés mécaniques, car elles présentent un rapport rigidité / poids élevé. En revanche, l'interaction entre les structures déformables et la surface libre de l'eau peut affecter le flux du fluide en contact avec la structure ainsi que et les charges hydrodynamiques estimées par rapport au corps rigide, en raison de l'apparition des effets hydro-élastiques. En outre, ces structures sont toujours soumises à des mécanismes de dommages différents et complexes sous un chargement dynamique. Pour ces raisons, la flexibilité et les modes de défaillance dans les matériaux composites présentent une complexité supplémentaire pour prédire les charges hydrodynamiques lorsqu'il y a une interaction avec un fluide (l'eau). Ceci a présenté un défi majeur pour utiliser ces matériaux dans les applications maritimes. Par conséquent, une attention particulière doit être accordée dans la phase de conception et l'analyse des performances pendant l'utilisation à vie. Les principales contributions de ce travail sont l’étude expérimentale et numérique du comportement dynamique des panneaux composites et la quantification de l'effet de la flexibilité de ces panneaux composites sur les charges hydrodynamiques et les déformations résultantes. Pour étudier ces effets, des panneaux composites stratifiés et sandwichs avec deux rigidités différentes sont soumis à diverses vitesses d'impact à l'aide d'une machine de choc équipée d'un système de contrôle de la vitesse. La résistance dynamique a été analysée en termes de charges hydrodynamiques, de déformations dynamiques et de mécanismes de défaillance pour différentes vitesses d'impact. L'analyse des résultats expérimentaux a montré que l’effort maximal augmente avec l’augmentation de la flexibilité des panneaux. D'autre part, le modèle numérique de tossage a été implémenté dans le logiciel Abaqus / Explicit basé sur l'approche du modèle Couplé Euler Lagrange (CEL). En outre, différents modes de défaillance des matériaux composites ont été développés et implémentés à l'aide d'une subroutine « VUMAT » définie par l'utilisateur et mis en œuvre dans le code de calcul éléments finis. Pour couvrir tous les modes de défaillance possibles dans les structures composites, l’implémentation de l’endommagement comprend : la rupture intralaminar, la décohésion de l'interface peau / âme et le cisaillement de l’âme. La confrontation des résultats expérimentaux avec les modèles numériques sur la prédiction de la force hydrodynamique et de la déformation du panneau valide l’approche adoptée. / Generally, when marine vessels encounter the water surface on entry and subsequently re-enter the water at high speed (slamming), this can subject the bottom section of the vessels to both local and global effects and generate unwanted vibrations in the structure, especially over very short durations. In marine design, the vessel speed has become an important aspect for optimal structure. Therefore, design requirements have been optimized in relation to the structural weight. In other hand, the appearance of the composite structures in the last decades has encouraged the exploitation of these structures in major construction projects for lightweight marine and aerospace applications. This is due to the nature of their mechanical properties which shows a high stiffness-to-weight ratio. In contrast, the interaction between deformable structures and free water surface can be modified the fluid flow and changed the estimated hydrodynamic loads comparing with rigid body, due to appearance of hydroelastic effects. Moreover, these structures are always subject to different and complex damage mechanisms under dynamic loading. For these reasons, the flexibility and the damage failure modes in composite materials introduce additional complexity for predicting hydrodynamic loads when interactive with water. This considered a key challenge to use these materials in marine applications. Therefore, special attention must be taken in the design phase and the analysis of performances during lifetime use. The main contributions of this work are the experimental and numerical study of the dynamic behavior of composite panels and the quantification of the effect of the flexibility of these structures on the hydrodynamic loads and the resulting deformations. To study these effects, laminate composite and sandwich panels with two different rigidities and subjected to various impact velocities have been investigated experimentally using high speed shock machine with velocity control system. The dynamic resistance was analysed in terms of hydrodynamic loads, dynamic deformation and failure mechanisms for different impact velocities. The general analysis of experiment results were indicated that more flexible panel has a higher peak force as velocity increases compared with higher stiffness panels. On the other hand, the slamming model was implemented in Abaqus/Explicit software based on Coupled Eulerian Lagrangian model approach (CEL). In addition, different damage modes are developed and constructed using a user-defined material subroutine VUMAT and implemented in Finite element method, including the intralaminar damage, debonding in skin/core interface, and core shear to cover all possible damage modes throughout structures. The numerical model gave a good agreement results in judging with experimental data for prediction of the hydrodynamic force and panel deformation. Additionally, this study gives qualitative and quantitative data which provides clear guidance in design phase and the evolution of performances during lifetime of composite structures, for marine structure designers.

Page generated in 0.063 seconds