• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Efficient Mechanisms for Exploration of Dangerous Graphs and for Inter-agent Communication

Balamohan, Balasingham 03 September 2013 (has links)
This thesis deals with the problems of exploration and map construction of a dangerous network by mobile agents, and it introduces new general mechanisms for inter-agent communication, which could be applied to other mobile agents' problems. A dangerous network contains a harmful process called Black Hole that destroys all agents entering the node where it resides, without leaving any observable trace. The task for the agents, which are moving asynchronously, is to construct a map of the network with edges incident on the black hole unambiguously identified. Two types of communication mechanisms are considered: whiteboards and tokens. In the whiteboard model every node provides a shared memory on which agents can read and write. When communication occurs through tokens, instead, the agents have some pebbles that can be placed on and picked up from the nodes. Four different costs for comparing the efficiency of the protocols are taken into account: the number of agents required, the number of moves performed, the size of the whiteboard (or the token capacity at a node), and time. The black hole search problem is considered first in ring networks with whiteboards, and optimal exact time and move complexities are established improving all existing results. The same problem is then studied in arbitrary unknown graphs and it is solved in the token model by using a constant number of tokens in total. The protocol improves on existing results and is based on a novel technique for communicating using tokens. Finally, the new method of communicating using tokens described in the context of black hole search is generalized to propose a novel communication mechanism among the agents that could possibly be employed for any distributed algorithm by mobile agents.
2

Efficient Mechanisms for Exploration of Dangerous Graphs and for Inter-agent Communication

Balamohan, Balasingham January 2013 (has links)
This thesis deals with the problems of exploration and map construction of a dangerous network by mobile agents, and it introduces new general mechanisms for inter-agent communication, which could be applied to other mobile agents' problems. A dangerous network contains a harmful process called Black Hole that destroys all agents entering the node where it resides, without leaving any observable trace. The task for the agents, which are moving asynchronously, is to construct a map of the network with edges incident on the black hole unambiguously identified. Two types of communication mechanisms are considered: whiteboards and tokens. In the whiteboard model every node provides a shared memory on which agents can read and write. When communication occurs through tokens, instead, the agents have some pebbles that can be placed on and picked up from the nodes. Four different costs for comparing the efficiency of the protocols are taken into account: the number of agents required, the number of moves performed, the size of the whiteboard (or the token capacity at a node), and time. The black hole search problem is considered first in ring networks with whiteboards, and optimal exact time and move complexities are established improving all existing results. The same problem is then studied in arbitrary unknown graphs and it is solved in the token model by using a constant number of tokens in total. The protocol improves on existing results and is based on a novel technique for communicating using tokens. Finally, the new method of communicating using tokens described in the context of black hole search is generalized to propose a novel communication mechanism among the agents that could possibly be employed for any distributed algorithm by mobile agents.
3

Black Hole Search in the Network and Subway Models

Kellett, Matthew 06 February 2012 (has links)
In this thesis we look at mobile agent solutions to black hole search and related problems. Mobile agents are computational entities that are autonomous, mobile, and can interact with their environment and each other. The black hole search problem is for a team of these agents to work together to map or explore a graph-like network environment where some elements of the network are dangerous to the agents. Most research into black hole search has focussed on finding a single dangerous node: a black hole. We look at the problem of finding multiple black holes and, in the case of dangerous graph exploration, multiple black links as well. We look at the dangerous graph exploration problem in the network model. The network model is based on a normal static computer network modelled as a simple graph. We give an optimal solution to the dangerous graph exploration problem using agents that start scattered on nodes throughout the network. We then make the problem more difficult by allowing an adversary to delete links during the execution of the algorithm and provide a solution using scattered agents. In the last decade or two, types of networks have emerged, such as ad hoc wireless networks, that are by their nature dynamic. These networks change quickly over time and can make distributed computations difficult. We look at black hole search in one type of dynamic network described by the subway model, which we base on urban subway systems. The model allows us to look at the cost of opportunistic movement by requiring the agents to move using carriers that follow routes among the network's sites, some of which are black holes. We show that there are basic limitations on any solution to black hole search in the subway model and prove lower bounds on any solution's complexity. We then provide two optimal solutions that differ in the agents' starting locations and how they communicate with one another. Our results provide a small window into the cost of deterministic distributed computing in networks that have dynamic elements, but which are not fully random.
4

Black Hole Search in the Network and Subway Models

Kellett, Matthew 06 February 2012 (has links)
In this thesis we look at mobile agent solutions to black hole search and related problems. Mobile agents are computational entities that are autonomous, mobile, and can interact with their environment and each other. The black hole search problem is for a team of these agents to work together to map or explore a graph-like network environment where some elements of the network are dangerous to the agents. Most research into black hole search has focussed on finding a single dangerous node: a black hole. We look at the problem of finding multiple black holes and, in the case of dangerous graph exploration, multiple black links as well. We look at the dangerous graph exploration problem in the network model. The network model is based on a normal static computer network modelled as a simple graph. We give an optimal solution to the dangerous graph exploration problem using agents that start scattered on nodes throughout the network. We then make the problem more difficult by allowing an adversary to delete links during the execution of the algorithm and provide a solution using scattered agents. In the last decade or two, types of networks have emerged, such as ad hoc wireless networks, that are by their nature dynamic. These networks change quickly over time and can make distributed computations difficult. We look at black hole search in one type of dynamic network described by the subway model, which we base on urban subway systems. The model allows us to look at the cost of opportunistic movement by requiring the agents to move using carriers that follow routes among the network's sites, some of which are black holes. We show that there are basic limitations on any solution to black hole search in the subway model and prove lower bounds on any solution's complexity. We then provide two optimal solutions that differ in the agents' starting locations and how they communicate with one another. Our results provide a small window into the cost of deterministic distributed computing in networks that have dynamic elements, but which are not fully random.
5

Black Hole Search in the Network and Subway Models

Kellett, Matthew 06 February 2012 (has links)
In this thesis we look at mobile agent solutions to black hole search and related problems. Mobile agents are computational entities that are autonomous, mobile, and can interact with their environment and each other. The black hole search problem is for a team of these agents to work together to map or explore a graph-like network environment where some elements of the network are dangerous to the agents. Most research into black hole search has focussed on finding a single dangerous node: a black hole. We look at the problem of finding multiple black holes and, in the case of dangerous graph exploration, multiple black links as well. We look at the dangerous graph exploration problem in the network model. The network model is based on a normal static computer network modelled as a simple graph. We give an optimal solution to the dangerous graph exploration problem using agents that start scattered on nodes throughout the network. We then make the problem more difficult by allowing an adversary to delete links during the execution of the algorithm and provide a solution using scattered agents. In the last decade or two, types of networks have emerged, such as ad hoc wireless networks, that are by their nature dynamic. These networks change quickly over time and can make distributed computations difficult. We look at black hole search in one type of dynamic network described by the subway model, which we base on urban subway systems. The model allows us to look at the cost of opportunistic movement by requiring the agents to move using carriers that follow routes among the network's sites, some of which are black holes. We show that there are basic limitations on any solution to black hole search in the subway model and prove lower bounds on any solution's complexity. We then provide two optimal solutions that differ in the agents' starting locations and how they communicate with one another. Our results provide a small window into the cost of deterministic distributed computing in networks that have dynamic elements, but which are not fully random.
6

Black Hole Search in the Network and Subway Models

Kellett, Matthew January 2012 (has links)
In this thesis we look at mobile agent solutions to black hole search and related problems. Mobile agents are computational entities that are autonomous, mobile, and can interact with their environment and each other. The black hole search problem is for a team of these agents to work together to map or explore a graph-like network environment where some elements of the network are dangerous to the agents. Most research into black hole search has focussed on finding a single dangerous node: a black hole. We look at the problem of finding multiple black holes and, in the case of dangerous graph exploration, multiple black links as well. We look at the dangerous graph exploration problem in the network model. The network model is based on a normal static computer network modelled as a simple graph. We give an optimal solution to the dangerous graph exploration problem using agents that start scattered on nodes throughout the network. We then make the problem more difficult by allowing an adversary to delete links during the execution of the algorithm and provide a solution using scattered agents. In the last decade or two, types of networks have emerged, such as ad hoc wireless networks, that are by their nature dynamic. These networks change quickly over time and can make distributed computations difficult. We look at black hole search in one type of dynamic network described by the subway model, which we base on urban subway systems. The model allows us to look at the cost of opportunistic movement by requiring the agents to move using carriers that follow routes among the network's sites, some of which are black holes. We show that there are basic limitations on any solution to black hole search in the subway model and prove lower bounds on any solution's complexity. We then provide two optimal solutions that differ in the agents' starting locations and how they communicate with one another. Our results provide a small window into the cost of deterministic distributed computing in networks that have dynamic elements, but which are not fully random.

Page generated in 0.0681 seconds