• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 80
  • 44
  • 19
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 168
  • 168
  • 95
  • 58
  • 56
  • 53
  • 45
  • 29
  • 27
  • 25
  • 23
  • 22
  • 22
  • 21
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Beyond the standard cosmological model : dark energy, massive neutrinos and statistical isotropy

Zunckel, Caroline Louise January 2008 (has links)
No description available.
42

Energia escura acoplada

Otalora Patiño, Giovanni [UNESP] 26 February 2010 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:24:06Z (GMT). No. of bitstreams: 0 Previous issue date: 2010-02-26Bitstream added on 2014-06-13T18:51:38Z : No. of bitstreams: 1 otalorapatino_g_me_ift.pdf: 425269 bytes, checksum: 54b8759a6432f649d63ed61ba3345593 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Na última década várias observações indicam que o universo está expandindo aceleradamente. Essa expansão acelerada pode ser explicada em um universo composto de 70% de energia escura e 30% de matéria (25% de matéria escura e 5% de matéria bariônica). A energia escura proporciona a pressão negativa necessária para produzir a aceleração em grandes escalas. Nesse trabalho faz-se uma revisão do modelo de um campo escalar como fonte da energia escura, conhecido genericamente como modelo de quintessência. Estuda-se o modelo de quintessência acoplada à matéria escura / In the previous decade many observations indicate that the universe is accelerating. This rapid expansion can be explained in an universe made up of 70% of dark energy and 30% of matter (25% of dark matter and 5% of baryonic matter). The dark energy provides negative pressure to produce acceleration. In this work it is studied the model of Quintessence, a model of scalar field, as source of the dark energy. It is studied the model of Coupled Quintessence with dark matter
43

Aplicações cosmológicas do campo espinorial ELKO / Cosmological applications of ELKO spinorial field

Souza, Alexandre Pinho dos Santos [UNESP] 31 August 2016 (has links)
Submitted by Alexandre Pinho dos Santos Souza null (alexandre.pinho510@gmail.com) on 2016-10-20T18:04:06Z No. of bitstreams: 1 Thesis_Final_Cut.pdf: 1024756 bytes, checksum: 359153fd460f589a2a0359f05ca87b3d (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-10-26T18:50:11Z (GMT) No. of bitstreams: 1 souza_aps_dr_ilha.pdf: 1024756 bytes, checksum: 359153fd460f589a2a0359f05ca87b3d (MD5) / Made available in DSpace on 2016-10-26T18:50:11Z (GMT). No. of bitstreams: 1 souza_aps_dr_ilha.pdf: 1024756 bytes, checksum: 359153fd460f589a2a0359f05ca87b3d (MD5) Previous issue date: 2016-08-31 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Dentro da cosmologia, o modelo ΛCDM é considerado, pela comunidade científica, como aquele que melhor descreve o universo. Todavia, tal modelo sofre de alguns males que ainda precisam ser sanados. Entre eles se destacam o problema da constante cosmológica e o problema da coincidência cósmica. Atribui-se, neste modelo, a expansão acelerada do universo a um ente de origem desconhecida, chamado de energia escura. Parte da solução destes problemas está intimamente ligado em saber a natureza da energia escura. Por outro lado, devido a propriedades intrínsecas do espinor ELKO, faz-se possível atribuir ao mesmo o papel de energia escura. Deste modo, constrói-se aplicações cosmológicas do ELKO que possibilitem a resolução completa ou parcial dos problemas mencionados. Estas aplicações consistem basicamente na análise do sistemas de equações de Friedmann oriundas da anexação do Lagrangeano do ELKO na ação de Einstein-Hilbert. Dentro desse sistema se insere a mão o possível decaimento do ELKO em outros elementos que constituem o universo. Com este se alivia o problema da coincidência cósmica, enquanto que se confirma que o ELKO pode figurar como energia escura por meio dos resultados do sistema geral. Ao fim do trabalho se observa uma outra aplicação do ELKO, desta vez no cenário cosmológico de Einstein-Cartan. Neste se mostra que o modelo cosmológico que contém o ELKO como energia escura, e na presença de termo de torção, é análogo ao modelo cosmológico Λ(t). / In cosmology the ΛCDM model is the most accepted way to describe the universe. However, this model suffers some problems that have to be solved. Namely there are two of them which are attached in this thesis. They are the cosmic coincidence and the cosmological constant problem. Due this model it is possible to relate the universe’s accelerated expansion to dark energy. Part of solving these problems pass through knowing the origin of dark energy. It is known that the spinor ELKO has some fundamental properties that able scientists to connect them to dark universe elements, e.g. dark energy. So, some applications of ELKO in cosmology have been made in order to explore this possibility and to solve those fundamental problems. These application are based on analyzing ELKO in dynamical systems formed by Friedmann’s equations, where these equations comes from putting ELKO’s Lagranian in the Einstein-Hilbert action. In this system it is inserted a term of decaying. With such term it is possible to alleviate cosmic coincidence problem. On the other hand it is also possible to justify ELKO as dark energy as wished at the beginning. Last but not least, another application of ELKO in cosmology has been investigated. For such case is was shown that, with some considerations and approximations, ELKO in cosmology allied with Einstein-Cartan formalism can mimic Λ(t) cosmology results.
44

Aplicações cosmológicas do campo espinorial ELKO /

Souza, Alexandre Pinho dos Santos. January 2016 (has links)
Orientador: Álvaro de Souza Dutra / Coorientador: Álvaro de Souza Dutra / Banca: Elias Leite Mendonça / Banca: Denis Dalmazi / Banca: Roldão da Rocha Júnior / Banca: José Abdala Helayë-Neto / Resumo: Dentro da cosmologia, o modelo ΛCDM é considerado, pela comunidade científica, como aquele que melhor descreve o universo. Todavia, tal modelo sofre de alguns males que ainda precisam ser sanados. Entre eles se destacam o problema da constante cosmológica e o problema da coincidência cósmica. Atribui-se, neste modelo, a expansão acelerada do universo a um ente de origem desconhecida, chamado de energia escura. Parte da solução destes problemas está intimamente ligado em saber a natureza da energia escura. Por outro lado, devido a propriedades intrínsecas do espinor ELKO, faz-se possível atribuir ao mesmo o papel de energia escura. Deste modo, constrói-se aplicações cosmológicas do ELKO que possibilitem a resolução completa ou parcial dos problemas mencionados. Estas aplicações consistem basicamente na análise do sistemas de equações de Friedmann oriundas da anexação do Lagrangeano do ELKO na ação de Einstein-Hilbert. Dentro desse sistema se insere a mão o possível decaimento do ELKO em outros elementos que constituem o universo. Com este se alivia o problema da coincidência cósmica, enquanto que se confirma que o ELKO pode figurar como energia escura por meio dos resultados do sistema geral. Ao fim do trabalho se observa uma outra aplicação do ELKO, desta vez no cenário cosmológico de Einstein-Cartan. Neste se mostra que o modelo cosmológico que contém o ELKO como energia escura, e na presença de termo de torção, é análogo ao modelo cosmológico Λ(t) / Abstract: In cosmology the ΛCDM model is the most accepted way to describe the universe. However, this model suffers some problems that have to be solved. Namely there are two of them which are attached in this thesis. They are the cosmic coincidence and the cosmological constant problem. Due this model it is possible to relate the universe's accelerated expansion to dark energy. Part of solving these problems pass through knowing the origin of dark energy. It is known that the spinor ELKO has some fundamental properties that able scientists to connect them to dark universe elements, e.g. dark energy. So, some applications of ELKO in cosmology have been made in order to explore this possibility and to solve those fundamental problems. These application are based on analyzing ELKO in dynamical systems formed by Friedmann's equations, where these equations comes from putting ELKO's Lagranian in the Einstein-Hilbert action. In this system it is inserted a term of decaying. With such term it is possible to alleviate cosmic coincidence problem. On the other hand it is also possible to justify ELKO as dark energy as wished at the beginning. Last but not least, another application of ELKO in cosmology has been investigated. For such case is was shown that, with some considerations and approximations, ELKO in cosmology allied with Einstein-Cartan formalism can mimic Λ(t) cosmology results / Doutor
45

Dark energy as a kinematic effect/

Jennen, Hendrik Gerard Johan. January 2016 (has links)
Orientador: José Geraldo Pereira / Banca: Ruben Aldrovandi / Banca: Rogério Rosenfeld / Banca: Oliver Fabio Piatella / Banca: José Wadih Maluf / Resumo: Observações realizadas nas últimas três décadas confirmaram que o universo se encontra em um estado de expansão acelerada. Essa aceleração é atribuída à presença da chamada energia escura, cuja origem permanece desconhecida. A maneira mais simples de se modelar a energia escura consiste em introduzir uma constante cosmológica positiva nas equações de Einstein, cuja solução no vácuo é então dada pelo espaço de de Sitter. Isso, por sua vez, indica que a cinemática subjacente ao espaço-tempo deve ser aproximadamente governada pelo grupo de de Sitter SO(1,4), e não pelo grupo de Poincaré ISO(1,3). Nesta tese, adotamos tal argumento como base para a conjectura de que o grupo que governa a cinemática local é o grupo de de Sitter, com o desvio em relação ao grupo de Poincaré dependendo ponto-a-ponto do valor de um termo cosmológico variável. Com o propósito de desenvolver tal formalismo, estudamos a geometria de Cartan na qual o espaço modelo de Klein é, em cada ponto, um espaço de de Sitter com o conjunto de pseudo-raios definindo uma função não-constante do espaço-tempo. Encontramos que o tensor de torção nessa geometria adquire uma contribuição que não está presente no caso de uma constante cosmológica. Fazendo uso da teoria das realizações não-lineares, estendemos a classe de simetrias do grupo de Lorentz SO(1,3) para o grupo de de Sitter. Em seguida, verificamos que a estrutura da gravitação teleparalela--- uma teoria gravitacional equivalente à relatividade geral--- é uma geometria de Riemann-Cartan não linear. Inspirados nesse resultado, construímos uma generalização da gravitação teleparalela sobre uma geometria de de Sitter--Cartan com um termo cosmológico dado por uma função do espaço-tempo, a qual é consistente com uma cinemática localmente governada pelo grupo de de Sitter. A função cosmológica possui sua própria dinâmica e emerge na... / Abstract: Observations during the last three decades have confirmed that the universe momentarily expands at an accelerated rate, which is assumed to be driven by dark energy whose origin remains unknown. The minimal manner of modelling dark energy is to include a positive cosmological constant in Einstein's equations, whose solution in vacuum is de Sitter space. This indicates that the large-scale kinematics of spacetime is approximated by the de Sitter group SO(1,4) rather than the Poincaré group ISO(1,3). In this thesis we take this consideration to heart and conjecture that the group governing the local kinematics of physics is the de Sitter group, so that the amount to which it is a deformation of the Poincaré group depends pointwise on the value of a nonconstant cosmological function. With the objective of constructing such a framework we study the Cartan geometry in which the model Klein space is at each point a de Sitter space for which the combined set of pseudoradii forms a nonconstant function on spacetime. We find that the torsion receives a contribution that is not present for a cosmological constant. Invoking the theory of nonlinear realizations we extend the class of symmetries from the Lorentz group SO(1,3) to the enclosing de Sitter group. Subsequently, we find that the geometric structure of teleparallel gravity--- a description for the gravitational interaction physically equivalent to general relativity--- is a nonlinear Riemann--Cartan geometry.This finally inspires us to build on top of a de Sitter--Cartan geometry with a cosmological function a generalization of teleparallel gravity that is consistent with a kinematics locally regulated by the de Sitter group. The cosmological function is given its own dynamics and naturally emerges nonminimally coupled to the gravitational field in a manner akin to teleparallel dark energy models or scalar-tensor theories in general relativity. New in... / Doutor
46

Um modelo para decaimento da energia escura / A model for dark energy decay

Leila Lobato Graef 11 April 2012 (has links)
Neste trabalho discutimos um modelo baseado em teoria de campos para descrever a energia escura, no qual ela é representada por uma partícula ultra-leve situada em um mínimo metaestável de um potencial. Mostramos que a energia escura neste modelo decai em matéria escura durante o tempo de vida do universo, amenizando o problema da coincidência. / In the present work we discuss a field theory model in which dark energy is described by ultra-light particle situated at a metastable minimum of a potential. We show that dark energy in this model decays into dark matter during a time scale corresponding to the age of the universe, alleviating the coincidence problem.
47

Influência da Transferência de Momento-Energia na Interação entre Matéria e Energia escura / Influence of Energy-Momentum Transfer in the Interaction between Matter and Dark Energy.

Lucas Collis Olivari 14 May 2014 (has links)
Neste trabalho, estudamos modelos cosmológicos em que a energia escura foi tratada como um campo de matéria que interage com a matéria escura. Três modelos distintos foram considerados. O primeiro trata tanto a matéria escura fria quanto a energia escura como fluidos perfeitos. O termo de interação entre eles é dado por uma expressão com origem fenomenológica que postulamos existir na equação de balanço entre esses dois fluidos. Dadas as equações no universo plano de Friedmann-Robertson-Walker (FRW), pudemos escrever uma versão covariante para as equações de balanço. Com isso, as equações de balanço em um universo de FRW perturbado linearmente foram obtidas. Isso, por sua vez, permitiu que a estabilidade das equações diferenciais obtidas fosse estudada. O segundo modelo tem origem em modelos de f(R). Esses modelos propõem uma generalização da Relatividade Geral ao considerar a ação da gravidade como um funcional do escalar de Ricci, R. Através de uma transformação conforme, foi possível reinterpretar os modelos de f(R) como modelos em que um campo escalar canônico, que representa a energia escura, interage com os campos da matéria. Através do princípio da ação, obtivemos as equações de movimento e o tensor de energia-momento para nosso sistema. Com o campo escalar sendo interpretado como um fluido perfeito, pudemos, por fim, obter equações de balanço entre fluidos perfeitos tanto no nível de fundo quanto no universo perturbado linearmente. O terceiro modelo começa com a lagrangiana, em um espaço-tempo de FRW, de um campo escalar canônico, que representa a energia escura, e um campo fermiônico de spin-1/2, que representa a matéria escura. Um termo de interação de Yukawa entre esses campos foi postulado existir na lagrangiana. Novamente através do princípio da ação, obtivemos as equações de movimento e o tensor de energia-momento para esses campos. Essas equações de movimento puderam, por fim, ser reescritas como equações de balanço entre fluidos perfeitos tanto no nível de fundo quanto no universo perturbado linearmente. / In this work we studied cosmological models in which the dark energy was treated as a field of matter that interacts with dark matter. Three different models were considered. The first one treats both the cold dark matter and the dark energy as perfect fluids. The interaction term between them is given by a expression with phenomenological origin that we postulated to exist in the balance equations between these two fluids. Given the equations in the flat Friedmann-Robertson-Walker (FRW) universe, we wrote a covariant version of the balance equations. Thus, the balance equations in a linearly perturbed FRW universe were obtained. This, in turn, allowed the stability of the obtained differential equations to be studied. The second model comes from f(R) models. These models propose a generalization of General Relativity by considering the action for gravity as a functional of the Ricci scalar, R. Through a conformal transformation, it was possible to reinterpret the f(R) models as models in which a canonical scalar field, which represents the dark energy, interacts with matter fields. Through the principle of least action, we obtained the equations of motion and the energy-momentum tensor for our system. With the scalar field being interpreted as a perfect fluid, we obtained equations of balance for perfect fluids at both the background level and in the linearly perturbed universe. The third model starts with the Lagrangian, in a FRW space-time, of a canonical scalar field, which represents the dark energy, and of a fermionic field of spin-1/2, which represents the dark matter. A Yukawa interaction term between these fields was postulated to exist in the Lagrangian. Again, through the principle of least action, we obtained the equations of motion and the energy-momentum tensor for these fields. These equations of motion could then be rewritten as balance equations for perfect fluids at both the background level and in the linearly perturbed universe.
48

Observational Constraints on Models with an Interaction between Dark Energy and Dark Matter / Vínculos Observacionais em Modelos com Interação entre Energia Escura e Matéria Escura

André Alencar da Costa 30 October 2014 (has links)
In this thesis we go beyond the standard cosmological LCDM model and study the effect of an interaction between dark matter and dark energy. Although the LCDM model provides good agreement with observations, it faces severe challenges from a theoretical point of view. In order to solve such problems, we first consider an alternative model where both dark matter and dark energy are described by fluids with a phenomenological interaction given by a combination of their energy densities. In addition to this model, we propose a more realistic one based on a Lagrangian density with a Yukawa-type interaction. To constrain the cosmological parameters we use recent cosmological data, the CMB measurements made by the Planck satellite, as well as BAO, SNIa, H0 and Lookback time measurements. / Nesta tese vamos além do modelo cosmológico padrão, o LCDM, e estudamos o efeito de uma interação entre a matéria e a energia escuras. Embora o modelo LCDM esteja de acordo com as observações, ele sofre sérios problemas teóricos. Com o objetivo de resolver tais problemas, nós primeiro consideramos um modelo alternativo, onde ambas, a matéria e a energia escuras, são descritas por fluidos com uma interação fenomenológica dada como uma combinação das densidades de energia. Além desse modelo, propomos um modelo mais realista baseado em uma densidade Lagrangiana com uma interação tipo Yukawa. Para vincular os parâmetros cosmológicos usamos dados cosmológicos recentes como as medidas da CMB feitas pelo satélite Planck, bem como medidas de BAO, SNIa, H0 e Lookback time.
49

Galaxy Evolution and Cosmology using Supercomputer Simulations by Daniel Cunnama / Submitted in fulfillment of the requirements for the degree of Doctor of Philosophy in the School of Physics, University of the Western Cape

Cunnama, Daniel January 2013 (has links)
Philosophiae Doctor - PhD / Numerical simulations play a crucial role in testing current cosmological models of the formation and evolution of the cosmic structure observed in the modern Universe. Simulations of the collapse of both baryonic and non-baryonic matter under the influence of gravity have yielded important results in our understanding of the large scale structure of the Universe. In addition to the underlying large scale structure, simulations which include gas dynamics can give us valuable insight into, and allow us to make testable predictions on, the nature and distribution of baryonic matter on a wide range of scales. In this work we give an overview of cosmological simulations and the methods employed in the solution of many body problems. We then present three projects focusing on scales ranging from individual galaxies to the cosmic web connecting clusters of galaxies thereby demonstrating the potential and diversity of numerical simulations in the fields of cosmology and astrophysics. We firstly investigate the environmental dependance of neutral hydrogen in the intergalactic medium by utilising high resolution cosmological hydrodynamic simulations in Chapter 3. We find that the extent of the neutral hydrogen radial profile is dependant on both the environment of the galaxy and its classification within the group ie. whether it is a central or satellite galaxy. We investigate whether this effect could arise from ram pressure forces exerted on the galaxies and find good agreement between galaxies experiencing high ram pressure forces and those with a low neutral hydrogen content. In Chapter 4 we investigate the velocity–shape alignment of clusters in a dark matter only simulation and the effect of such an alignment on measurements of the kinetic Sunyaev–Zeldovich (kSZ) effect. We find an alignment not only exists but can lead to an enhancement in the kSZ signal of up to 60% when the cluster is orientated along the line-of-sight. Finally we attempt to identify shocked gas in clusters and filaments using intermediate resolution cosmological hydrodynamic simulations in Chapter 5 with a view to predicting the synchrotron emission from these areas, something that may be detectable with the Square Kilometer Array.
50

Astrophysical tests of modified gravity

Sakstein, Jeremy Aaron January 2014 (has links)
Einstein's theory of general relativity has been the accepted theory of gravity for nearly a century but how well have we really tested it? The laws of gravity have been probed in our solar system to extremely high precision using several different tests and general relativity has passed each one with flying colours. Despite this, there are still some mysteries it cannot account for, one of which being the recently discovered acceleration of the universe and this has prompted a theoretical study of modified theories of gravity that can self-accelerate on large scales. Indeed, the next decade will be an exciting era where several satellites will probe the structure of gravity on cosmological scales and put these theoretical predictions to the test. Despite this, one must still worry about the behaviour of gravity on smaller scales and the vast majority of these theories are rendered cosmologically uninteresting when confronted with solar system tests of gravity. This has motivated the study of theories that differ from general relativity on large scales but include screening mechanisms which act to hide any modifications in our own solar system. This then presents the problem of being able to distinguish these theories from general relativity. In the last few years, astrophysical scales have emerged as a new and novel way of probing these theories. These scales encompass the mildly non-linear regime between galactic and cosmological scales where the astrophysical objects have not yet joined the Hubble flow. For this reason, the screening mechanism is active but not overly efficient and novel effects may be present. Furthermore, these tests do not require a large sample of galaxies and hence do not require dedicated surveys; instead they can piggyback on other experiments. This thesis explores a class of theories of screened modified gravity which are scalar-tensor theories where the field is conformally coupled to matter via the metric and includes chameleon and symmetron models as well as those that screen using the environment-dependent Damour-Polyakov effect. The thesis is split into two parts. The first is aimed at searching for new and novel astrophysical probes and using them to place new constraints on the model parameters. In particular, we derive the equations governing hydrodynamics in the presence of an external gravitational field that includes the modifications of general relativity. Using this, we derive the equations governing the equilibrium structure of stars and show that unscreened stars are brighter and hotter than their screened counterparts owing to the larger nuclear burning rate in the core needed to combat the additional inward force. These theories have the property that the laws of gravity are different in unscreened galaxies from our own. This means that the inferred distance to an unscreened galaxy using a stellar effect that depends on the law gravity will not agree with a measurement using a different method that is insensitive gravitational physics. We exploit this property by comparing the distances inferred using pulsating Cepheid variable stars, tip of the red giant branch stars and water masers to place new constraints on the model parameters that are three orders of magnitude stronger than those previously reported. Finally, we perturb the equations of modified gravity hydrodynamics to first order and derive the equations governing the oscillations of stars about their equilibrium structure. By solving these equations we show that unscreened stars are more stable to small perturbations than screened stars. Furthermore, we find that the oscillation period is far shorter than was previously estimated and this means that the current constraints can potentially be improved using previous data-sets. We discuss these new results in light of current and future astrophysical tests of modified gravity. The final part of this thesis is dedicated to the search for supersymmetric completions of modified theories of gravity. There have been recent investigations into the quantum stability of these models and there is evidence that they may suffer from quantum instabilities. Supersymmetric theories enjoy powerful non-renormalisation theories that may help to avoid these issues. For this reason, we construct a framework for embedding these models into global supersymmetry and investigate the new features this introduces. We show how supersymmetry is broken at a scale set by the ambient density and that, with the exception of no-scale models, supergravity corrections already constrain the model parameters to levels where it is not possible to probe the theories with astrophysics or laboratory experiments. Next, we construct a class of supersymmetric chameleon models and investigate their cosmology. In particular, we find that they are indistinguishable from the LCDM model at the background level but that they may show deviations in the cold dark matter power spectrum that can be probed using upcoming experiments. Finally, we introduce a novel mechanism where a cosmological constant in the form of a Fayet-Illiopoulos term can appear at late times and investigate the constraints this imposes on the model parameter space.

Page generated in 0.085 seconds