• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Data-Centric Network of Things : A Method for Exploiting the Massive Amount of Heterogeneous Data of Internet of Things in Support of Services

Xiao, Bin January 2017 (has links)
Internet of things (IoT) generates massive amount of heterogeneous data, which should be efficiently utilized to support services in different domains. Specifically, data need to be supplied to services by understanding the needs of services and by understanding the environment changes, so that necessary data can be provided efficiently but without overfeeding. However, it is still very difficult for IoT to fulfill such data supply with only the existing supports of communication, network, and infrastructure; while the most essential issues are still unaddressed, namely the heterogeneity issue, the recourse coordination issue, and the environments’ dynamicity issue. Thus, this necessitates to specifically study on those issues and to propose a method to utilize the massive amount of heterogeneous data to support services in different domains. This dissertation presents a novel method, called the data-centric network of things (DNT), which handles heterogeneity, coordinates resources, and understands the changing IoT entity relations in dynamic environments to supply data in support of services. As results, various services based on IoT (e.g., smart cities, smart transport, smart healthcare, smart homes, etc.) are supported by receiving enough necessary data without overfeeding. The contributions of the DNT to IoT and big data research are: firstly the DNT enables IoT to perceive data, resources, and the relations among IoT entities in dynamic environments. This perceptibility enhances IoT to handle the heterogeneity in different levels. Secondly, the DNT coordinates IoT edge resources to process and disseminate data based on the perceived results. This releases the big data pressure caused by centralized analytics to certain degrees. Thirdly, the DNT manages entity relations for data supply by handling the environment dynamicity. Finally, the DNT supply necessary data to satisfy different service needs, by avoiding either data-hungry or data-overfed status.
2

Building a scalable distributed data platform using lambda architecture

Mehta, Dhananjay January 1900 (has links)
Master of Science / Department of Computer Science / William H. Hsu / Data is generated all the time over Internet, systems sensors and mobile devices around us this is often referred to as ‘big data’. Tapping this data is a challenge to organizations because of the nature of data i.e. velocity, volume and variety. What make handling this data a challenge? This is because traditional data platforms have been built around relational database management systems coupled with enterprise data warehouses. Legacy infrastructure is either technically incapable to scale to big data or financially infeasible. Now the question arises, how to build a system to handle the challenges of big data and cater needs of an organization? The answer is Lambda Architecture. Lambda Architecture (LA) is a generic term that is used for scalable and fault-tolerant data processing architecture that ensures real-time processing with low latency. LA provides a general strategy to knit together all necessary tools for building a data pipeline for real-time processing of big data. LA comprise of three layers – Batch Layer, responsible for bulk data processing, Speed Layer, responsible for real-time processing of data streams and Service Layer, responsible for serving queries from end users. This project draw analogy between modern data platforms and traditional supply chain management to lay down principles for building a big data platform and show how major challenges with building a data platforms can be mitigated. This project constructs an end to end data pipeline for ingestion, organization, and processing of data and demonstrates how any organization can build a low cost distributed data platform using Lambda Architecture.

Page generated in 0.0494 seconds