Spelling suggestions: "subject:"data complexity"" "subject:"mata complexity""
1 |
Data Density and Trend Reversals in Auditory Graphs: Effects on Point Estimation and Trend Identification TasksNees, Michael A. 28 February 2007 (has links)
Auditory graphsdisplays that represent graphical, quantitative information with soundhave the potential to make graphical representations of data more accessible to blind students and researchers as well as sighted people. No research to date, however, has systematically addressed the attributes of data that contribute to the complexity (the ease or difficulty of comprehension) of auditory graphs. A pair of studies examined the role of both data density (i.e., the number of discrete data points presented per second) and the number of trend reversals for both point estimation and trend identification tasks with auditory graphs. For the point estimation task, results showed main effects of both variables, with a larger effect attributable to performance decrements for graphs with more trend reversals. For the trend identification task, a large main effect was again observed for trend reversals, but an interaction suggested that the effect of the number of trend reversals was different across lower data densities (i.e., as density increased from 1 to 2 data points per second). Results are discussed in terms of data sonification applications and rhythmic theories of auditory pattern perception.
|
2 |
Data complexity in supervised learning: A far-reaching implicationMacià Antolínez, Núria 06 October 2011 (has links)
Aquesta tesi estudia la complexitat de les dades i el seu rol en la definició del comportament de les tècniques d'aprenentatge supervisat, i alhora explora la generació artificial de conjunts de dades mitjançant estimadors de complexitat. El treball s'ha construït sobre quatre principis que s'han succeït de manera natural. (1) La crítica de la metodologia actual utilitzada per la comunitat científica per avaluar el rendiment de nous sistemes d'aprenentatge ha desencadenat (2) l'interès per estimadors alternatius basats en l'anàlisi de la complexitat de les dades i el seu estudi. Ara bé, tant l'estat primerenc de les mesures de complexitat com la disponibilitat limitada de problemes del món real per fer el seu test han inspirat (3) la generació sintètica de problemes, la qual ha esdevingut l'eix central de la tesi, i (4) la proposta de fer servir estàndards artificials amb semblança als problemes reals.
L'objectiu que es persegueix a llarg termini amb aquesta recerca és proporcionar als usuaris (1) unes directrius per escollir el sistema d'aprenentatge idoni per resoldre el seu problema i (2) una col•lecció de problemes per, o bé avaluar el rendiment dels sistemes d'aprenentatge, o bé provar les seves limitacions. / Esta tesis profundiza en el estudio de la complejidad de los datos y su papel en la definición del comportamiento de las técnicas de aprendizaje supervisado, a la vez que explora la generación artificial de conjuntos de datos mediante estimadores de complejidad. El trabajo se ha construido sobre cuatro pilares que se han sucedido de manera natural. (1) La crítica de la metodología actual utilizada por la comunidad científica para evaluar el rendimiento de nuevos sistemas de aprendizaje ha desatado (2) el interés por estimadores alternativos basados en el análisis de la complejidad de los datos y su estudio. Sin embargo, tanto el estado primerizo de las medidas de complejidad como la limitada disponibilidad de problemas del mundo real para su testeo han inspirado (3) la generación sintética de problemas, considerada el eje central de la tesis, y (4) la propuesta del uso de estándares artificiales con parecido a los problemas reales.
El objetivo que se persigue a largo plazo con esta investigación es el de proporcionar a los usuarios (1) unas pautas pare escoger el sistema de aprendizaje más idóneo para resolver su problema y (2) una colección de problemas para evaluar el rendimiento de los sistemas de aprendizaje o probar sus limitaciones. / This thesis takes a close view of data complexity and its role shaping the behaviour of machine learning techniques in supervised learning and explores the generation of synthetic data sets through complexity estimates. The work has been built upon four principles which have naturally followed one another. (1) A critique about the current methodologies used by the machine learning community to evaluate the performance of new learners unleashes (2) the interest for alternative estimates based on the analysis of data complexity and its study.
However, both the early stage of the complexity measures and the limited availability of real-world problems for testing inspire (3) the generation of synthetic problems, which becomes the backbone of this thesis, and (4) the proposal of artificial benchmarks resembling real-world problems.
The ultimate goal of this research flow is, in the long run, to provide practitioners (1) with some guidelines to choose the most suitable learner given a problem and (2) with a collection of benchmarks to either assess the performance of the learners or test their limitations.
|
Page generated in 0.0568 seconds