• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Classifying Urgency : A Study in Machine Learning for Classifying the Level of Medical Emergency of an Animal’s Situation

Strallhofer, Daniel, Ahlqvist, Jonatan January 2018 (has links)
This paper explores the use of Naive Bayes as well a Linear Support Vector Machines in order to classify a text based on the level of medical emergency. The primary source of testing will be an online veterinarian service’s customer data. The aspects explored are whether a single text gives enough information for a medical decision to be made and if there are alternative data gathering processes that would be preferred. Past research has proven that text classifiers based on Naive Bayes and SVMs can often give good results. We show how to optimize the results so that important decisions can be made with these classifications as a basis. Optimal data gathering procedures will be a part of this optimization process. The business applications of such a venture will also be discussed since implementing such a system in an online medical service will possibly affect customer flow, goodwill, cost/revenue, and online competitiveness. / Denna studie utforskar användandet av Naive Bayes samt Linear Support Vector Machines för att klassificera en text på en medicinsk skala. Den huvudsakliga datamängden som kommer att användas för att göra detta är kundinformation från en online veterinär. Aspekter som utforskas är om en enda text kan innehålla tillräckligt med information för att göra ett medicinskt beslut och om det finns alternativa metoder för att samla in mer anpassade datamängder i framtiden. Tidigare studier har bevisat att både Naive Bayes och SVMs ofta kan nå väldigt bra resultat. Vi visar hur man kan optimera resultat för att främja framtida studier. Optimala metoder för att samla in datamängder diskuteras som en del av optimeringsprocessen. Slutligen utforskas även de affärsmässiga aspekterna utigenom implementationen av ett datalogiskt system och hur detta kommer påverka kundflödet, goodwill, intäkter/kostnader och konkurrenskraft.

Page generated in 0.1145 seconds