• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Techniques for Multilingual Document Retrieval for Open-Domain Question Answering : Using hard negatives filtering, binary retrieval and data augmentation / Tekniker för flerspråkig dokumenthämtning för OpenQA : Använder hård negativ filtrering, binär sökning och dataförstärkning

Lago Solas, Carlos January 2022 (has links)
Open Domain Question Answering (OpenQA) systems find an answer to a question from a large collection of unstructured documents. In this information era, we have an immense amount of data at our disposal. However, filtering all the content and trying to find the answers to our questions can be too time-consuming and ffdiicult. In addition, in such a globalised world, the information we look for to answer a question may be in a different language. Current research is focused on improving monolingual (English) OpenQA performance. This creates a disparity between the tools accessible between English and non-English speakers. The techniques explored in this study involve the combination of different methods, such as data augmentation and hard negative filtering for performance increase, and binary embeddings for improving the efficiency, with multilingual Transformers. The downstream performance is evaluated using sentiment multilingual datasets covering Cross-Lingual Transfer (XLT), question and answer in the same language, and Generalised Cross-Lingual Transfer (G-XLT), different languages for question and answer. The results show that data augmentation increased Recall by 37.0% and Mean Average Precision (MAP) by 67.0% using languages absent from the test set for XLT. Combining binary embeddings and hard negatives can reduce inference time and index size to 12.5% and 3.1% of the original, retaining 97.1% of the original Recall and 94.8% of MAP (averages of XLT and MAP). / Open Domain Question Answering (OpenQA)-system hittar svar på frågor till stora samlingar av ostrukturerade dokument. I denna informationsepok har vi en enorm mängd kunskap till vårt förfogande. Att filtrera allt innehåll för att försöka att hitta svar på våra frågor kan dock vara mycket tidskrävande och svårt. I en globaliserad värld kan informationen vi söker för att besvara en fråga dessutom vara på ett annat språk. Nuvarande forskning är primärt inriktad på att förbättra OpenQA:s enspråkiga (engelska) prestanda. Detta skapar ett gap mellan de verktyg som är tillgängliga för engelsktalande och icke-engelsktalande personer. De tekniker som undersöks i den här studien innebär en kombination av olika metoder, t.ex. dataförstärkning och hård negativ filtrering för att öka prestandan, och binära embeddings för att förbättra effektiviteten med flerspråkiga Transformatorer. Prestandan nedströms utvärderas med hjälp av flerspråkiga dataset som omfattar Cross-Lingual Transfer (XLT), fråga och svar på samma språk, och Generalised Cross-Lingual Transfer (G-XLT), olika språk för fråga och svar. Resultaten visar att dataförstärkning ökade recall med 37.0% och 67.0% för Mean Average Precision (MAP) med hjälp av språk som inte fanns med i testuppsättningen för XLT. Genom att kombinera binära embeddings och hårda negationer kan man minska tiden för inferens och indexstorleken till 12.5% och 3.1% av originalet, samtidigt som man behåller 97.1% av ursprunglig recall samt 94.8% av MAP (medelvärden av XLT och MAP).
2

A comparative study of the effect of different data augmentation methods on the accuracy of a CNN model to detect Pneumothorax of the lungs / En komparativ studie om påverkan av olika dataförstärkningsmetoder på noggrannheten hos en CNN-modell för att detektera Pneumothorax i lungorna

Staifo, Gabriel, Hanna, Rabi January 2024 (has links)
The use of AI in the medical field is becoming more widespread, and research on its various applications is very popular. In biomedical image analysis, Convolutional Neural Networks (CNN), which are specialized in image processing, can analyze X-rays and detect signs of different diseases. However, to achieve that, CNNs require vast amounts of X-ray images with labels specifying the disease (labeled training data), which is not always available. One method to overcome this obstacle is the use of data augmentation. Data augmentation is manipulating images through flipping, rotating, or changing the saturation or brightness, among other methods. The purpose is to increase and diversify the training data to make the CNN model more robust. Our study aims to investigate the effects of different data augmentation techniques on the performance of a CNN model in detecting Pneumothorax. After fine-tuning our CNN model’s hyper-parameters, three data augmentation methods (color, geometric, and noise) and their combinations were applied to our model. We then tested and compared the effects of each data augmentation method on the accuracy of our model. Our study concluded that color augmentation performed the best compared to the other augmentation methods, while geometric augmentation had the worst performance. However, none of the augmentation methods significantly improved the original model’s performance, which can be attributed to the model’s configuration of hyper-parameters, leaving no room for improvement. / Användningen av AI inom det medicinska området blir mer utbredd och forskning om dess olika tillämpningar är mycket populär. Inom biomedicinsk bildanalys kan Convolutional Neural Networks (CNN), som är specialiserade på bildbehandling, analysera röntgenstrålar och upptäcka tecken på olika sjukdomar. Men för att uppnå det kräver CNN stora mängder röntgenbilder med etiketter som anger sjukdomen (märkta träningsdata), vilket inte alltid är tillgängligt. En metod för att övervinna detta hinder är användningen av dataförstärkning. Dataförstärkning är att manipulera bilder genom att bläddra, rotera eller ändra mättnad eller ljusstyrka, bland andra metoder. Syftet är att öka och diversifiera träningsdata för att göra CNN-modellen mer robust. Vår studie syftar till att undersöka effekterna av olika dataförstärkningstekniker på prestandan hos en CNN-modell vid detektering av pneumothorax. Efter att ha finjusterat vår CNN-modells hyperparametrar, tillämpades tre dataförstärkningsmetoder (färg, geometrisk och brus) och deras kombinationer på vår modell. Vi testade och jämförde sedan effekterna av varje dataförstärkningsmetod på noggrannheten i vår modell. Vår studie drog slutsatsen att färgförstärkning presterade bäst jämfört med andra förstärkningsmetoder, medan geometrisk förstärkning hade sämst prestanda. Ingen av förstärkningsmetoderna förbättrade dock den ursprungliga modellens prestanda avsevärt, vilket kan tillskrivas modellens konfiguration av hyperparametrar, vilket inte lämnar något utrymme för förbättringar.
3

Mispronunciation Detection with SpeechBlender Data Augmentation Pipeline / Uttalsfelsdetektering med SpeechBlender data-förstärkning

Elkheir, Yassine January 2023 (has links)
The rise of multilingualism has fueled the demand for computer-assisted pronunciation training (CAPT) systems for language learning, CAPT systems make use of speech technology advancements and offer features such as learner assessment and curriculum management. Mispronunciation detection (MD) is a crucial aspect of CAPT, aimed at identifying and correcting mispronunciations in second language learners’ speech. One of the significant challenges in developing MD models is the limited availability of labeled second-language speech data. To overcome this, the thesis introduces SpeechBlender - a fine-grained data augmentation pipeline designed to generate mispronunciations. The SpeechBlender targets different regions of a phonetic unit and blends raw speech signals through linear interpolation, resulting in erroneous pronunciation instances. This method provides a more effective sample generation compared to traditional cut/paste methods. The thesis explores also the use of pre-trained automatic speech recognition (ASR) systems for mispronunciation detection (MD), and examines various phone-level features that can be extracted from pre-trained ASR models and utilized for MD tasks. An deep neural model was proposed, that enhance the representations of extracted acoustic features combined with positional phoneme embeddings. The efficacy of the augmentation technique is demonstrated through a phone-level pronunciation quality assessment task using only non-native good pronunciation speech data. Our proposed technique achieves state-of-the-art results, with Speechocean762 Dataset [54], on ASR dependent MD models at phoneme level, with a 2.0% gain in Pearson Correlation Coefficient (PCC) compared to the previous state-of-the-art [17]. Additionally, we demonstrate a 5.0% improvement at the phoneme level compared to our baseline. In this thesis, we developed the first Arabic pronunciation learning corpus for Arabic AraVoiceL2 to demonstrate the generality of our proposed model and augmentation technique. We used the corpus to evaluate the effectiveness of our approach in improving mispronunciation detection for non-native Arabic speakers learning. Our experiments showed promising results, with a 4.6% increase in F1-score for the Arabic AraVoiceL2 testset, demonstrating the effectiveness of our model and augmentation technique in improving pronunciation learning for non-native speakers of Arabic. / Den ökande flerspråkigheten har ökat efterfrågan på datorstödda CAPT-system (Computer-assisted pronunciation training) för språkinlärning. CAPT-systemen utnyttjar taltekniska framsteg och erbjuder funktioner som bedömning av inlärare och läroplanshantering. Upptäckt av felaktigt uttal är en viktig aspekt av CAPT som syftar till att identifiera och korrigera felaktiga uttal i andraspråkselevernas tal. En av de stora utmaningarna när det gäller att utveckla MD-modeller är den begränsade tillgången till märkta taldata för andraspråk. För att övervinna detta introduceras SpeechBlender i avhandlingen - en finkornig dataförstärkningspipeline som är utformad för att generera feluttalningar. SpeechBlender är inriktad på olika regioner i en fonetisk enhet och blandar råa talsignaler genom linjär interpolering, vilket resulterar i felaktiga uttalsinstanser. Denna metod ger en effektivare provgenerering jämfört med traditionella cut/paste-metoder. I avhandlingen undersöks användningen av förtränade system för automatisk taligenkänning (ASR) för upptäckt av felaktigt uttal. I avhandlingen undersöks olika funktioner på fonemnivå som kan extraheras från förtränade ASR-modeller och användas för att upptäcka felaktigt uttal. En LSTM-modell föreslogs som förbättrar representationen av extraherade akustiska egenskaper i kombination med positionella foneminbäddningar. Effektiviteten hos förstärkning stekniken demonstreras genom en uppgift för bedömning av uttalskvaliteten på fonemnivå med hjälp av taldata som endast innehåller taldata som inte är av inhemskt ursprung och som ger ett bra uttal, Vår föreslagna teknik uppnår toppresultat med Speechocean762-dataset [54], på ASR-beroende modeller för upptäckt av felaktigt uttal på fonemnivå, med en ökning av Pearsonkorrelationskoefficienten (PCC) med 2,0% jämfört med den tidigare toppnivån [17]. Dessutom visar vi en förbättring på 5,0% på fonemnivå jämfört med vår baslinje. Vi observerade också en ökning av F1-poängen med 4,6% med arabiska AraVoiceL2-testset.

Page generated in 0.0527 seconds