• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

mRNA degradation factors as regulators of the gene expression in Saccharomyces cerevisiae / mRNA nedbrytningsfaktorer som regulatorer av genexpression i Saccharomyces cerevisiae.

Muppavarapu, Mridula January 2016 (has links)
Messenger RNA degradation is crucial for the regulation of eukaryotic gene expression. It not only modulates the basal mRNA levels but also functions as a quality control system, thereby controlling the availability of mRNA for protein synthesis. In Saccharomyces cerevisiae, the first and the rate-limiting step in the process of mRNA degradation is the shortening of the poly(A) tail by deadenylation complex. After the poly(A) tail shortens, mRNA can be degraded either through the major 5' to 3' decapping dependent or the 3' to 5' exosome-mediated degradation pathway. In this thesis, we show some of the means by which mRNA decay factors can modulate gene expression. First, Pat1 is a major cytoplasmic mRNA decay factor that can enter the nucleus and nucleo-cytoplasmically shuttle.  Recent evidence suggested several possible nuclear roles for Pat1. We analyzed them and showed that Pat1 might not function in pre-mRNA decay or pre-mRNA splicing, but it is required for normal rRNA processing and transcriptional elongation. We show that the mRNA levels of the genes related to ribosome biogenesis are dysregulated in the strain lacking Pat1, a possible cause of the defective pre-rRNA processing. In conclusion, we theorize that Pat1 might regulate gene expression both at the level of transcription and mRNA decay. Second, Edc3 and Lsm4 are mRNA decapping activators and mRNA decay factors that function in the assembly of RNA granules termed P bodies. Mutations in mRNA degradation factors stabilize mRNA genome-wide or stabilize individual mRNAs. We demonstrated that paradoxically, deletion of Edc3 together with the glutamine/asparagine-rich domain of Lsm4 led to a decrease in mRNA stability. We believe that the decapping activator Edc3 and the glutamine/asparagine-rich domain of Lsm4 functions together, to modify mRNA decay pathway by altering cellular mRNA decay protein abundance or changing the mRNP composition or by regulating P bodies, to enhance mRNA stability. Finally, mRNA decay was recently suggested to occur on translating ribosomes or within P bodies. We showed that mRNA degradation factors associate with large structures in sucrose density gradients and this association is resistant to salt and sensitive to detergent. In flotation assay, mRNA decay factors had buoyancy consistent with membrane association, and this association is independent of stress, translation, P body formation or RNA. We believe that such localization of mRNA degradation to membranes may have important implications in gene expression. In conclusion, this thesis adds to the increasing evidence of the importance of the mRNA degradation factors in the gene expression.
2

mRNA Decay Pathways Use Translation Fidelity and Competing Decapping Complexes for Substrate Selection

Celik, Alper 15 May 2017 (has links)
mRNA decay is an important step in gene regulation, environmental responsiveness, and mRNA quality control. One such quality control pathway, Nonsense-mediated mRNA Decay (NMD), targets transcripts whose translation terminates prematurely. However, the scope and the defining features of NMD-targeted transcripts remain elusive. To address these issues, we re-evaluated the genome-wide expression of annotated transcripts in yeast cells harboring deletions of the UPF1, UPF2, or UPF3 genes. The vast majority of NMD-regulated transcripts are normal-looking protein-coding mRNAs. Our bioinformatics analyses reveal that this set of NMD-regulated transcripts generally have lower translational efficiency, lower average codon optimality scores, and higher ratios of out-of-frame translation. General mRNA decay is predominantly mediated by decapping by the Dcp1-Dcp2 complex and 5' to 3' decay by Xrn1, but the exact mechanism of decapping regulation has remained largely unknown. Several in vitro and in vivo studies have revealed the importance of the C-terminal extension of Dcp2 and the identities of many decapping regulators that interact with the decapping complex. To better understand how decapping regulation is achieved by the C-terminal extension of Dcp2 we generated RNA-Seq libraries from a Dcp2 allele that lacks this portion of Dcp2 along with libraries from strains that contain single deletions of several decapping activators. Our transcriptome-wide results indicate that the C-terminal extension of Dcp2 is crucial for efficient regulation of decapping, and different decapping activators are responsible for targeting different sets of mRNAs. Considering the limited pool of Dcp1-Dcp2 in the cell decapping activators might be in competition for decapping complex binding. Collectively, our results yield valuable insights into the mechanism of substrate selection for mRNA quality control and decay in yeast.

Page generated in 0.0291 seconds