• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5417
  • 743
  • 598
  • Tagged with
  • 6745
  • 6745
  • 3139
  • 3138
  • 3138
  • 1990
  • 1926
  • 1140
  • 616
  • 587
  • 333
  • 329
  • 275
  • 263
  • 256
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Multiwavelength Probes of Physical Conditions in the Blazar Zone of AGN jets / Untersuchung der physikalischen Bedingungen in der Blazar Zone von AGN Jets mit Multiwellenlängenbeobachtungen

Burd, Paul Ray January 2022 (has links) (PDF)
Context. In active galaxies, matter is accreted onto super massive black holes (SMBH). This accretion process causes a region roughly the size of our solar system to outshine the entire host galaxy, forming an active galactic nucleus (AGN). In some of these active galaxies, highly relativistic particle jets are formed parallel to the rotation axis of the super massive black hole. A fraction of these sources is observed under a small inclination angle between the pointing direction of the jet and the observing line of sight. These sources are called blazars. Due to the small inclination angle and the highly relativistic speeds of the particles in the jet, beaming effects occur in the radiation of these particles. Blazars can be subdivided into the high luminosity flat spectrum radio quasars (FSRQs) and the low luminosity BL Lacertae objects (BL Lacs). As all AGN, blazars are broadband emitters and therefore observable from the longest wavelengths in the radio regime to the shortest wavelengths in the gamma-ray regime. In this thesis I will analyze blazars at these two extremes with respect to their parsec-scale properties in the radio and their time evolution properties in gamma-ray flux. Method. In the radio regime the technique of very long baseline interferometry (VLBI) can be used in order to spatially resolve the synchrotron radiation coming from those objects down to sub-parsec scales. This information can be used to observe the time evolution of the structure of such sources. This is done in large monitoring programs such as the MOJAVE (15 GHz) and the Boston University blazar monitoring program (43 GHz). In this thesis I utilize data of 28 sources from these monitoring programs spanning 10 years of observation from 2003 to 2013, resulting in over 1800 observed epochs, to study the brightness temperature and diameter gradients of these jets. I conduct a search for systematic geometry transitions in the radio jets. The synchrotron cooling time in the radio core of the jets is used to determine the magnetic field strength in the radio core. Considering the jet geometry, these magnetic field strengths are scaled to the ergosphere of the SMBH in order to obtain the distance of the radio core to the SMBH. In the gamma-regime these blazars cannot be spatially resolved. Due to this, it is hard to put strong constrains onto where the gamma-ray emitting region is. Blazars have shown to be variable at high energies on time scales down to minutes. The nature of this variability can be studied in order to put constrains on the particle acceleration mechanism and possibly the region and size of the gamma-ray emitting region. The variability of blazars in the energy range between 0.1 GeV and 1 GeV can for example be observed with the pair-conversion telescope on board the Fermi satellite. I use 10 years of data from the Fermi-LAT (LAT: Large Area Telescope) satellite in order to study the variability of a large sample of blazars (300-800, depending on the used significance filters for data points). I quantify this variability with the Ornstein-Uhlenbeck (OU) parameters and the power spectral density (PSD) slopes. The same procedure is applied to 20 light curves available for the radio sample. Results. The diameter evolution along the jet axis of the radio sources suggests, that FSRQs feature flatter gradients than BL Lacs. Fitting these gradients, it is revealed that BL Lacs are systematically better described by a simple single power law than FSRQs. I found 9 sources with a strongly constrained geometry transition. The sources are 0219+421, 0336-019, 0415+379, 0528+134, 0836+710, 1101+384, 1156+295, 1253-055 and 2200+420. In all of these sources, the geometry transition regions are further out in the jet than the Bondi sphere. The magnetic field strengths of BL Lacs is systematically larger than that of FSRQs. However the scaling of these fields suggest that the radio cores of BL Lac objects are closer to the SMBHs than the radio cores of FSRQs. Analyzing the variability of Fermi-LAT light curves yields consistent results for all samples. FSRQs show systematically steeper PSD slopes and feature OU parameters more favorable to strong variability than BL Lacs. The Fermi-LAT light curves of the sub-sample of radio jets, suggest an anticorrelation between the jet complexity from the radio observations and the OU-parameters as well as the PSD slopes from the gamma-ray observations. Conclusion. The flatter diameter gradients of FSRQs suggest that these sources are more collimated further down the jet than BL Lacs. The systematically better description of the diameter and brightness temperature gradient by a single power law of BL Lacs, suggest that FSRQs are more complex with respect to the diameter evolution along the jet and the surface brightness distribution than BL Lac objects. FSRQs often feature regions where recollimation can occur in distinct knots within the jets. For the sources where a geometry transition could be constrained, the Bondi radius, being systematically smaller than the position of the transition region along the jet axis, suggest that changing pressure gradients are not the sole cause for these systematic geometry transitions. Nevertheless they may be responsible for recollimation regions, found typically downstream the jet, beyond the Bondi radius and the transition zone. The difference in the distance of the radio cores between FSRQs and BL Lacs is most likely due to the combination of differences in SMBH masses and systematically smaller jet powers in BL Lacs. The variability in energy ranges above 100 MeV and above 1 GeV-regime suggest that many light curves of BL Lac objects are more likely to be white noise while the PSD slopes and the OU parameters of FSRQ gamma-ray light curves favor stronger variability on larger time scales with respect to the time binning of the analyzed light curve. Although the anticorrelation of the jet complexity acquired from the radio observations and the PSD slopes and OU parameters from the gamma-observations suggest that more complex sources favor OU parameters and PSD slopes resulting in more variability (not white noise) it is beyond the scope of this thesis to pinpoint whether this correlation results from causation. The question whether a complex jet causes more gamma-ray variability or more gamma-ray variability causes more complex jets cannot be answered at this point. Nevertheless the computed correlation measures suggest that this dependence is most likely not linear and therefore an indication that these effects might even interact. / Einordnung. Durch Akkretion von Materie auf supermassive schwarze Löcher (engl.: super massive black holes, SMBH) in den Zentren von aktiven Galaxien (engl.: active galactic nuclei, AGN) wird auf einer Skala von der Größe unseres Sonnensystems eine Energie freigesetzt, die den Rest der Galaxie dieser AGN überstrahlt. In einigen dieser AGN werden, parallel zur Rotationsachse des SMBHs, hochrelativistische Teilchenströme (Jets) erzeugt. Einige dieser AGN werden unter einem kleinen Winkel zwischen der Jetachse und der Beobachtungssichtlinie erfasst. Ist dies der Fall, führt der kleine Sichtwinkel bei gleichzeitigem Bestehen hochrelativistischer Geschwindigkeiten der Teilchen im Jet dazu, dass die Strahlung der Teilchen den sogenannten Beaming-Effekten unterliegt. Diese AGN nennt man Blazare, welche anhand der Leuchtkraft unterschieden werden können in Radioquasare, die ein flaches Radiospektrum aufweisen (engl.: flat spectrum radio quasars, FSRQs), mit einer hohen Leuchtkraft und BL Lacertae Ojekte (BL Lacs) mit einer niedrigen Leuchtkraft. Blazare sind Breitbandemitter und daher mit den längsten Wellenlängen im Radiobereich bis zu den kleinsten Wellenlängen im gamma-Bereich beobachtbar. In dieser Arbeit werde ich Eigenschaften dieser Blazare auf Parsecskalen durch Radiobeobachtungen und die Zeitentwicklung der Helligkeit dieser im gamma-Bereich analysieren. Methoden. Im Radioregime wird die Technik der sehr langen Basislinieninterferometrie (engl. very long baseline interferometry, VLBI) genutzt, um die Synchrotronstrahlung von Blazaren auf sub-Parsecskalen räumlich aufzulösen. Große Monitoringprogramme wie 'MOJAVE' (Beobachtungen bei 15 GHz) und das 'Boston University blazar monitoring program' (Beobachtungen bei 43 GHz) beobachten diese Quellen mit einer circa monatlichen Kadenz. Bei jeder Beobachtung spricht man von einer Epoche. Für diese Arbeit werde ich Daten von 28 Quellen dieser Programme aus einem Zeitraum von zehn Jahren (2003 bis 2013) nutzen. Das ergibt mehr als 1800 Epochen. Anhand dieser Daten sollen die Helligkeitstemperaturen und Geometrien der Jets analysiert werden. Des Weiteren werde ich nach systematischen Geometrieübergängen in den Jets der Blazare suchen und die Synchrotronkühlzeit nutzen, um die Magnetfeldstärken in den Radiokernen der Jets zu berechnen. Diese Kernmagnetfeldstärken können genutzt werden, um die Abstände der Radiokerne von den Ergosphären der SMBHs zu berechnen. Im gamma-Bereich können diese Quellen nicht räumlich aufgelöst werden. Daher ist es schwierig auszumachen, woher genau in einer solchen Quelle die gamma-Strahlung stammt. In diesem Energiebereich sind Blazare sehr variabel. Variabilitätszeitskalen können in den hellsten Quellen bis zur Minutenskala aufgelöst werden. Die Eigenschaft dieser Variabilität kann Hinweise auf die Teilchenbeschleunigungsprozesse, die Region, aus der diese Strahlung stammt, und die Größe der Emissionsregion geben. Blazare können im Energiebereich zwischen 0.1 GeV und 1 GeV zum Beispiel mit dem Teilchenpaarumwandlungsteleskop auf dem Fermisatelliten beobachtet werden. In dieser Arbeit werden ca. 10 Jahre an \fermi-LAT-Beobachtungen verwendet (LAT: engl. large area telescope), um die Variabilität einer großen Zahl an Blazaren ca. 300-800 je nach Signifikanzfiltern) zu untersuchen. Dabei werden Ornstein-Uhlenbeck-Parameter (OU-Parameter), sowie die spektrale Leistungsdichte genutzt, um die Variabilität dieser Quellen zu untersuchen. Dies wird auch auf die gamma-Lichtkurven von 20 der 28 Radioquellen angewandt. Ergebnisse. Die Entwicklung des Jetdurchmessers entlang der Jetachse legt nahe, dass FSRQs, weiter außen im Jet, flachere Gradienten zeigen als BL Lacs. Eine einfache Potenzgesetzanpassung dieser Gradienten zeigt, dass FSRQs systematisch schlechter durch ein solches Potenzgesetz beschrieben werden als BL Lacs, sowohl in der Durchmesserentwicklung entlang der Jetachse, als auch in der Helligkeitstemperaturentwicklung. In neun der 28 Quellen, 0219+421, 0336-019, 0415+379, 0528+134, 0836+710, 1101+384, 1156+295, 1253-055 und 2200+420, ist es möglich einen systematischen Geometrieübergang im Jet zu finden. In jedem dieser Fälle ist die Position des Geometrieübergangs entlang der Jetachse außerhalb der Bondisphäre. BL Lac-Objekte zeigen systematisch größere Magnetfeldstärken in den Radiokernen als FSRQs. Skaliert man diese in die Ergosphäre des SMBHs, kann man zeigen, dass die Radiokerne der BL Lacs näher an den schwarzen Löchern liegen als die Radiokerne der FSRQs. Die Variabilitätsanalyse der gamma-Lichtkurven zeigt, dass FSRQs systematisch steilere spektrale Leistungsdichten aufweisen als BL Lacs und sich auch in den OU-Parametern von BL Lacs unterscheiden. Des Weiteren gibt es eine messbare Antikorrelation zwischen der Steigung der spektralen Leistungsdichten und der OU Parameter der gamma-Lichtkurven und der Komplexität der Radiojets. Schlussfolgerung. Flachere Jetdurchmessergradienten weisen darauf hin, dass FSRQs, weiter außen im Jet kollimierter sind als BL Lacs. Die Tatsache, dass FSRQs durch einfache Potenzgesetze in der Anpassung der Helligkeitstemperatur und der Jetgeometrie systematisch schlechter beschrieben sind als BL Lacs, zeigt, dass FSRQs komplexere Jetstrukturen aufweisen. Dies gilt sowohl für die Jetgeometrie, welche in einigen Quellen auch Regionen der Rekollimation aufweisen, als auch für die Oberflächenhelligkeitsverteilungen, die in FSRQs oft ausgeprägte Knoten aufweisen. In Quellen, in welchen ein Geometrieübergang festgestellt werden kann, ist es aufgrund der Position der Geometrieübergänge entlang der Jetachse, die systematisch außerhalb der Bondisphäre zu sehen sind, unwahrscheinlich, dass diese Übergänge allein durch sich ändernde äußere Druckgradienten erklärt werden können. Sich ändernde Druckgradienten können in manchen Quellen eine systematische Erhellung einer Region außerhalb der Bondisphäre und des Geoemtrieübergangs, einhergehend mit einer Rekollimation des Durchmessers, erklären. Die unterschiedlichen Abstände der Radiokerne von BL Lacs und FSRQs können vermutlich durch eine Kombination aus verschiedenen SMBH-Massen und Jetleistungen erklärt werden. Die Variabilität in den gamma-Lichtkurven bei Energien von mehr als 100 MeV und über 1 GeV legt nahe, dass BL Lac-Objekte mehr weißes Rauschen aufweisen als FSRQs, während die Steigung der spektralen Leistungsdichte und die OU-Parameter zeigen, dass FSRQs systematisch mehr Variabilität auf längeren Zeitskalen respektive des Zeitbinnings aufweisen als BL Lacs. Eine Antikorrelation zwischen den Steigungen der spektralen Leistungsdichten und der OU-Parameter aus den gamma-Lichtkurven mit den Komplexitäten der Radiojets ist messbar. Diese Antikorrelation zeigt, dass komplexere Jets eher variablere gamma-Lichtkurven aufweisen. Daraus lässt sich aber nicht die Region der gamma-Strahlung im Radiojet ableiten. Es ist nicht klar, ob diese Korrelation auf Kausalität beruht. Wenn diese Korrelation auf kausalen Zusammenhängen beruht, ist nicht klar, ob ein komplexer Jet stärkere gamma-Variabilität bedingt oder ob starke gamma-Variabilität komplexere Jets bedingen. Aus den verwendeten Korrelationstests geht jedoch hervor, dass die Art der Korrelation nicht auf einen einfachen linearen Zusammenhang zurückzuführen ist, was darauf hindeutet, dass beide Aspekte sich vermutlich gegenseitig bedingen.
12

Struktur- und Lumineszenzuntersuchungen an unterschiedlich praeparierten, modifizierten und strukturierten nanoporoesen Si-Schichten.

Cichos, Anna 14 March 1997 (has links)
Die vorliegende Arbeit beschreibt die Herstellung, Strukturierung und Modifizierung von poroesem Silizium. Es wird der Mechanismus der Lumineszenz in poroesem Silizium und der Einfluss von Herstellungsparametern und einer Dotierung mit Laserfarbstoffen auf die optischen Eigenschaften von poroesem Silizium untersucht. Fuer die optische Charakterisierung wurden Photolumineszenz-, Photolumineszenzanregungs- und Kathodolumineszenzspektren aufgenommen. Weiterhin werden Methoden zur Erzeugung von poroesen Mikrostrukturen mit Hilfe eines ECSTM sowie zum Schreiben von optischen Mustern in poroesem Silizium durch einen Elektronenstrahl vorgestellt. Strukturelle Untersuchungen wurden mit einem SEM und einem TEM durchgefuehrt.
13

Untersuchung der Effekte niederenergetischen Ionen-Beschusses in Kohlenstoff- uind Siliziumsystemen auf der Grundlage von Molekulardynamik-Simulationen

Uhlmann, Sylke 11 July 1997 (has links)
Die Dissertation beschaeftigt sich mit der Analyse ballistischer Effekte, diein der Wechselwirkung niederenergetischer Ionen mit Oberflaechen kovalenter Festkoerper auftreten. Im Mittelpunkt stehen dabei Kohlenstoff- und Siliziumsysteme und Ionenenergien unter 100 eV. Das Eindringverhalten der hyperthermischen Atome unter die oberste Atomlage wird analysiert,woraus sich Schwellenergien fuer das Eindringen selbst sowie fuer die Erzeugung permanenter Gitterdefekte, die sogenannte Displacement-Energie, ergeben. Molekulardynamik-Simulationen (MD) bilden ein leistungsfaehiges Werkzeug fuer die Untersuchung dieser Prozesse. Die fuer die Berechnung der interatomaren Kreafte verwendete Dichtefunktional-Tight-Binding-Methode (DFTB)bietet bei vertretbarem rechentechnischen Aufwand eine hohe Genauigkeit bei der Beschreibung von Defekt-Topologien, Oberflaechenrekonstruktionen und amorphen Netzwerken.Die Displacement-Energien werden entsprechend ihrer Orientierungsabhaengigkeit fuer Diamant und Silizium diskutiert, wobei gleichzeitig die Umordnungsmechanismen und Defekte analysiert werden. Ein MD-Verfahren fuer die Bestimmung der ballistischen Eindringschwelle von Ionen in Oberflaechen wird vorgestellt, welches die Berechnung der Minimal-Ionenenergie fuer das Eindringen von Atomen unter die oberste Lage selbst komplizierter Oberflaechen erlaubt. Die Eindringschwelle sowie die Energieabhaengigkeit des Eindringquerschnittes fuer auf eine Si(100)-Oberflaeche auftreffende Siliziumatome werden diskutiert.Computersimulationen des Beschusses von amorphem Kohlenstoff mit Kohlenstoffatomen fuehren auf eine Spezifikation des Subplantationsmodells. Unter Beschuss wird die Ausbildung einer leerstellenreichen Oberflaechenschicht, einer Zwischenschicht mit einer hohen Zahl schwach gebundener Atome, sowie einer Schicht mit fortschreitender Anreicherung sp3-gebundener Atome beobachtet. Die Minimalenergie fuer die Ausbildung der Zwischenschicht wird mit 10 eV bestimmt.
14

Numerical Studies of Quantum Spin Systems / Numerische Untersuchungen von Quanten-Spin-Systemen

Brünger, Christian January 2007 (has links) (PDF)
Der erste Teil der Arbeit widmet sich der Untersuchung des Bilayer-Heisenberg-Modells und des zweidimensionalen Kondo-Necklace-Modells. Beide Modelle weisen einen Quantenphasenübergang zwischen einer geordneten und einer ungeordneten Phase auf. In dieser Arbeit richtet sich das Interesse insbesondere auf die Kopplung der kritischen Fluktuationen an ein in das System eingebundenes Loch. Mittels eines selbstkonsistenten Born'schen Näherungsverfahrens wird gezeigt, dass das Loch mit den Magnonen derart wechselwirkt, dass dessen Quasiteilchengewicht am quantenkritischen Punkt verschwindet. Um diesen Aspekt weiter zu untersuchen, wird das Verhalten des Quasiteilchengewichts im Bereich der kritischen Kopplung auch mit Quanten-Monte-Carlo-Methoden analysiert. Desweiteren werden die dynamischen Eigenschaften des Loches im magnetischen Hintergrund untersucht. Im zweiten Teil dieser Arbeit gilt das Interesse der Untersuchung des Spiral-Staircase-Heisenberg-Modells. Dieses besteht aus zwei, zu einer Spinleiter ferromagnetisch gekopplten Spin-1/2-Ketten, wobei die antiferromagnetische Kopplung innerhalb der zweiten Kette durch Windung der Leiter variiert werden kann. Dieses Model eignet sich, den Übergang zwischen einer Spin-1/2-Kette ohne Spinlücke und einer Spin-1-Kette mit Spinlücke zu studieren. Besondere Beachtung ist dem Öffnen der Spinlücke in Abhängigkeit der ferromagnetischen Kopplung zwischen den Leiterbeinen geboten. Es stellt sich heraus, dass das System, abhängig von der Leiterwindung, wesentliche Unterschiede im Skalierungsverhalten der Spinlücke aufweist. Desweiteren wird mittels der String-Order-Parameter gezeigt, dass das Spiral-Staircase-Heisenberg-Modell trotz des unterschiedlichen Skalierungsverhaltens der Spinlücke und unabhängig von der Wahl der Parameter sich stets in der Haldane-Phase befindet. Die Analyse der Modelle bedient sich hauptsächlich Quanten-Monte-Carlo-Methoden, aber auch exakter Diagonalisierungstechniken, sowie auf Molekularfeldnäherungen gestützten Rechnungen. / In a first part the bilayer Heisenberg Model and the 2D Kondo necklace model are studied. Both models exhibit a quantum phase transition between an ordered and disordered phase. The question is addressed to the coupling of a single doped hole to the critical fluctuations. A self-consistent Born approximation predicts that the doped hole couples to the magnons such that the quasiparticle residue vanishes at the quantum critical point. In this work the delicate question about the fate of the quasiparticle residue across the quantum phase transition is also tackled by means of large scale quantum Monte Carlo simulations. Furthermore the dynamics of a single hole doped in the magnetic background is investigated. In the second part an analysis of the spiral staircase Heisenberg ladder is presented. The ladder consists of two ferromagnetic coupled spin-1/2 chains, where the coupling within the second chain can be tuned by twisting the ladder. Within this model the crossover between an ungapped spin-1/2 system and a gapped spin-1 system can be studied. In this work the emphasis is on the opening of the spin gap with respect to the ferromagnetic rung coupling. It is shown that there are essential differences in the scaling behavior of the spin gap depending on the twist of the model. Moreover, by means of the string order parameter it is shown, that the system remains in the Haldane phase within the whole parameter range although the spin gap scales differently. The tools which are used for the analyses are mainly large scale quantum Monte Carlo methods, but also exact diagonalization techniques as well as mean field approaches.
15

Magnetic Resonance Imaging and Spectroscopy at ultra high fields / Magnetresonanztomographie und -spektroskopie bei sehr hohen Feldstärken

Neuberger, Thomas January 2008 (has links) (PDF)
The goal of the work presented in this thesis was to explore the possibilities and limitations of MRI / MRS using an ultra high field of 17.6 tesla. A broad range of specific applications and MR methods, from MRI to MRSI and MRS were investigated. The main foci were on sodium magnetic resonance spectroscopic imaging of rodents, magnetic resonance spectroscopy of the mouse brain, and the detection of small amounts of iron labeled stem cells in the rat brain using MRI Sodium spectroscopic imaging was explored since it benefits tremendously from the high magnetic field. Due to the intrinsically low signal in vivo, originating from the low concentrations and short transverse relaxation times, only limited results have been achieved by other researchers until now. Results in the literature include studies conducted on large animals such as dogs to animals as small as rats. No studies performed on mice have been reported, despite the fact that the mouse is the most important laboratory animal due to the ready availability of transgenic strains. Hence, this study concentrated on sodium MRSI of small rodents, mostly mice (brain, heart, and kidney), and in the case of the brain on young rats. The second part of this work concentrated on proton magnetic resonance spectroscopy of the rodent brain. Due to the high magnetic field strength not only the increasing signal but also the extended spectral resolution was advantageous for such kind of studies. The difficulties/limitations of ultra high field MRS were also investigated. In the last part of the presented work detection limits of iron labeled stem cells in vivo using magnetic resonance imaging were explored. The studies provided very useful benchmarks for future researchers in terms of the number of labeled stem cells that are required for high-field MRI studies. Overall this work has shown many of the benefits and the areas that need special attention of ultra high fields in MR. Three topics in MRI, MRS and MRSI were presented in detail. Although there are significant additional difficulties that have to be overcome compared to lower frequencies, none of the work presented here would have been possible at lower field strengths. / Das Ziel der vorliegenden Arbeit war neue Möglichkeiten, aber auch Grenzen der Kernmagnetresonanz an Kleintieren an NMR - Systemen mit sehr hohen Feldstärken (bis zu 17.6 Tesla) zu erkunden. Anhand ausgesuchter Anwendungen wurden Methoden der Bildgebung (MRI), der Spektroskopie (MRS) als auch der spektroskopischen Bildgebung (MRSI) untersucht. Der Hauptteil der Arbeit beschäftigt sich mit der spektroskopischen Bildgebung von Natrium an Kleintieren. Weitere Themen sind die Protonenspektroskopie am Ratten- und Mäusehirn und die Untersuchung der Nachweisgrenze von mit Eisen markierten Stammzellen im Rattenhirn mittels der NMR Bildgebung. Spektroskopische Bildgebung von Natrium wurde durchgeführt, da diese Anwendung von besonderem Maße von dem höheren Feld profitiert. Auf Grund des intrinsisch geringen Signals in vivo, welches seine Ursachen in den relativ geringen in vivo Konzentrationen und den kurzen Relaxationszeiten hat, wurden bisher nur NMR Untersuchungen an größeren Tieren durchgeführt. In der Literatur wurden bisher noch keine Untersuchungen an dem wichtigsten Labortier, der Maus, beschrieben. Diese Arbeit konzentrierte sich daher auf Untersuchungen an Kleintieren, sprich der Ratte (Hirn) und der Maus (Hirn, Herz und Niere). Der zweite Teil der Arbeit konzentrierte sich auf Protonen MRS am Kleintierhirn. Hier war nicht nur das höhere SNR sondern auch der ebenfalls auf Grund des hohen Magnetfeldes erweiterte spektrale Bereich von Vorteil. Schwierigkeiten und Grenzen des hohen Feldes wurden in diesem Abschnitt ebenfalls untersucht. Im dritten und letzten Teil der vorliegenden Arbeit wurde die Detektierbarkeitsgrenze von mit Eisen markierten Stammzellen mittels MRI untersucht. Die Studie zeigt Richtgrößen an benötigten markierten Zellen für zukünftige Studien. Insgesamt wurden in dieser Arbeit die vielen Vorteile, aber auch die Gebiete welche besondere Aufmerksamkeit bei Messungen an sehr hohen Magnetfeldern benötigen, aufgezeigt. Drei Themen im Bereiche der Kernspintomographie, der Spektroskopie und der spektroskopischen Bildgebung wurden im Detail untersucht. Obwohl durch das hohe Magnetfeld neue Schwierigkeiten bewältigt werden mussten, wäre keine der hier präsentierten Studien bei niedrigen Feldstärken durchführbar gewesen.
16

Transportuntersuchungen an vertikal- und lateral-gekoppelten niederdimensionalen Elektronensystemen / Transport Investigations on Vertically and Laterally Coupled Low Dimensional Electron-Systems

Lang, Stefan January 2009 (has links) (PDF)
An Y-Schaltern konnte eine nichtlineare Verschiebung der Schwellspannung beobachtet werden. In einem Y-Schalter spaltet sich ein Stammwellenleiter über einen Verzweigungspunkt Y-förmig in zwei Astwellenleiter auf, so dass prinzipiell mehrere Maxima im Leitungsband existieren. Daher wurde ein Modell entwickelt, das die Dynamik der Leitungsbandmaxima im elektrischen Feld beschreibt. Dieses beinhaltet sowohl die geometrischen Kapazitäten als auch die Quantenkapazitäten des Y-Schalters. Zudem konnte gezeigt werden, dass lokalisierte Ladungen zur Beschreibung des Schaltens notwendig sind. Die Verschiebung der Schwellspannungen kann hierbei sehr gut durch das Zusammenspiel der klassischen und der Quantenkapazitäten beschrieben werden, wobei sich herausstellt, dass die Quantenkapazitäten des Systems einen dominierenden Einfluss auf das Schaltverhalten nehmen. Für X-förmige Verzweigungen wird gezeigt, dass für ausgewählte Spannungsbereiche an den vier lateralen Kontrollgates der Transport durch den X-Schalter entweder geblockt oder erlaubt ist. Dies wurde auf die Ausbildung eines Quantenpunkts im Zentrum des X-Schalters zurückgeführt. Es liegt also Coulomb-Blockade vor und der Elektronentransport durch die Struktur kann mittels eines Stabilitätsdiagramms analysiert werden. Es zeigt sich, dass die zentrale Elektroneninsel einen Durchmesser von etwa 20nm hat und eine Ladeenergie von E_C=15meV besitzt. Weiterhin konnten Transportbereiche aufgezeigt werden, welche einen negativen differentiellen Leitwert basierend auf einer dynamischen Kapazität aufweisen. Außerdem konnte in größeren Verzweigungen bistabiles Schalten aufgrund von Selbstschalten nachgewiesen werden. Es ist hierbei sowohl invertierendes als auch nicht-invertierendes Schalten zu beobachten. Es wurden Quantendrahttransistoren auf der Basis von wenigen Nanometer übereinander liegenden, vertikal gekoppelten Elektronengasen realisiert. Die Herstellung der Strukturen stellt hierbei besondere Herausforderungen an die Prozessierungstechniken. So mussten Barrieren unterschiedlicher Al-Konzentrationen während des Wachstums mittels Molekularstrahlepitaxie eingebracht werden, um einen Al-selektiven Ätzprozess anwenden zu können. Die beiden Elektronengase sind nach dem Wachstum lediglich durch eine 7nm dicke AlGaAs-Barriere voneinander getrennt. Um die beiden Elektronengase getrennt voneinander zu kontaktieren war es anschließend notwendig, ein spezielles Ätzverfahren anzuwenden. Es zeigte sich, dass eines der 2DEGs aufgrund des extrem geringen Abstands als hocheffektives Gate für das andere 2DEG dienen kann, wobei für die untersuchten Strukturen eine Gateeffektivität nahe eins, das heißt ein ideales Schalten, beschrieben wird. In Strukturen geringerer Dotierkonzentration wird anschließend hocheffektives Schalten bis zu einer Temperatur von 250K demonstriert. Basierend auf derartigen vertikal gekoppelten Elektronengasen wurden außerdem trocken geätzte Y-Transistoren hergestellt. Es kann bistabiles Schalten nachgewiesen werden, wobei analog zu den X-Strukturen ein Ast als Gate dient. Die Hysterese des bistabilen Schaltens kann dabei so klein eingestellt werden, dass rauschaktiviertes Schalten zwischen den beiden Ausgangszuständen des Systems zu beobachten ist. Es zeigt sich, dass das Schalten in solchen Strukturen mit einer Aktivierungsenergie von lediglich 0.4 kT erfolgt. Somit ist dieser Wert kleiner als das thermische Limit für stabiles Schalten in klassischen Bauelementen. Der 2-Terminal-Leitwert eines Quantendrahts bei Magnetfeldumkehr zeigt Asymmetrien, welche stark sowohl von den Spannungen an den Gates abhängen. Der Strom durch den Quantendraht kann einerseits mittels eines lateralen Gates und außerdem durch ein auf der Oberfläche liegendes vertikales Metallgate gesteuert werden. Hierbei wurde der Kanal einerseits durch Verarmung des 2DEGs über ein Metallgate definiert. Andererseits wurde auf der gegenüberliegenden Seite eine Potentialbarriere durch den Ätzgraben aufgebaut. Es stellte sich heraus, dass die gemessenen Asymmetrien auf den Wechsel zwischen elastischer Streuung der Kanalelektronen an der elektrostatischen Begrenzung und inelastischer Streuung an der geätzten Grenzfläche zurückzuführen sind. Für hohe Vorwärtsspannungen zeigt sich, dass der asymmetrische Anteil der dominierende Term im Leitwert ist. Dies erlaubt es, die vorliegende Struktur als Magnetfeldsensor, mit einer Sensitivität von 3.4mVT zu verwenden. Als Ausblick für die Zukunft kann festgestellt werden, dass komplex geformte Leiterbahnen durch die Ausnutzung von Effekten wie Coulomb-Blockade und Selbstschalten ein großes Potential für zukünftige Schaltkreise besitzen. Da Schaltenergien durch das Ausnutzen von Systemrauschen kleiner als das thermische Limit auftreten soll es ein Ziel für die Zukunft sein, Neuron ähnliche Schaltkreise auf der Basis von verzweigten Schaltern zu realisieren. / This thesis reports on transport investigations performed with semiconductor nanostructures carrying low-dimensional, highly mobile electron gases. These structures are based on modulation doped GaAs/AlGaAs layers. Lithographic techniques were subsequently applied to define narrow channels with different geometries. In this way, laterally as well as vertically coupled conductors like Y- and X-structures were realized. Non-linear threshold voltage shifts in an electron Y-branch switch We have studied the threshold characteristics and gate efficiencies of electron Y-branch switches controlled by in-plane gates. The threshold voltage was found to shift in a nonlinear manner for a certain regime of inplane electric fields controlled by the voltage difference between the gates along the junction. This result is interpreted in terms of local conduction band maxima in the stem and the branches. To explain the non-linear threshold we propose a model based on coupled quantum capacitances and geometrical capacitances including charges localized in the Y-branch. Also the switching efficiencies, which are measures of how much of a change in the electrochemical potential of the gate is transferred into a change of the conduction band maximum, in the switch depend on the gate voltages. The switching efficiency is larger for those parts of the Y-branch with the smallest quantum capacitance. Network-calculations enabled us to determine the relevant system-parameters. Coulomb-blockade and bistability in X-structures We demonstrated charge transport to be blocked for certain voltage regimes applied to four laterally coupled sidegates of an X-structure. This is related to the formation of an electron island, a quantum dot, in the branching section of the device. Therefore, diamond patterns associated with Coulomb- blockade were observed in transport spectroscopy and the electron transport across the structure was analyzed by means of a stability diagram. It was found that the central electron island has a diameter of about 20nm with a charging energy of E_C=15meV. Furthermore we identified transport regimes showing a negative differential conductance. This was interpreted in terms of a dynamic capacitance between the island and the respective drain contact. Moreover bistable switching was demonstrated as a result of self-gating. Inverting as well as non-inverting switching in the self-gating regime is also realized. Coupled two dimensional electron gases Double GaAs quantum wells embedded between modulation-doped AlGaAs barriers with different Al contents were grown by molecular beam epitaxy. Independent electric contacts to each well were realized by applying different etching techniques. Particularly, the lower quantum well was electrically pinched off by an undercut of the lower AlGaAs barrier exploiting an Al-selective etching process. In contrast, the upper quantum well was locally depleted by top etched trenches. Transistor operation of quantum wires defined in such bilayers is demonstrated at room temperature with one GaAs layer used as conducting channel controlled by the other nearby layer as efficient quantum gate. Furthermore, in devices exploiting a low doping concentration, highly effective gating with gate leverage factors near unity is realized up to T=250K. Finally, bistable switching operation is observed for structures exploiting a floating gate. Provided this floating gate becomes charged, it is demonstrated that the threshold voltage of the waveguide increases drastically. Magnetic-field induced asymmetries in quantum wires with asymmetric gate coupling The two-terminal conductance of GaAs/AlGaAs quantum wires was studied in the non-linear regime. The quantum wires were coupled asymmetrically to a metal gate and investigated for a magnetic field perpendicular to the sample surface. A sidegate was defined by wet chemical etching of a deep trench. Adjacent to this trench a narrow metal top gate was deposited on the sample's surface. Therefore, the channel was on the one hand defined by local depletion of the 2DEG by means of a negative topgate voltage. On the other hand, the etched trench leads to a potential barrier serving also as sidewall. It was found that the conductance of the quantum wire shows pronounced asymmetries when the magnetic field is reversed. These asymmetries are related to different scattering mechanisms, i.e. specular scattering of the channel electrons at the sidewall caused by an electrostatic confinement and backscattering at the boundary due to the etched trench. The asymmetric conductance was identified to increase significantly with the bias voltage. This probably allows the application of such structures as magnetic field sensors with a sensitivity of 3.4mV/T
17

New techniques in liquid-phase ultrafast spectroscopy / Neue Techniken der Ultrakurzzeitspektroskopie in der flüssigen Phase

Langhojer, Florian January 2009 (has links) (PDF)
Contents List of Publications 1 Introduction 2 Basic concepts and instrumentation 2.1 Mathematical description of femtosecond laser pulses 2.2 Optical quantities and measurements 2.2.1 Intensity 2.2.2 Absorbance and Beer-Lambert law 2.3 Laser system 2.4 General software framework for scientific data acquisition and simulation 2.4.1 Core components 2.4.2 Program for executing a single measurement sequence 2.4.3 Scan program 2.4.4 Evolutionary algorithm optimization program 2.4.5 Applications of the software framework 2.5 Summary 3 Generation of ultrabroadband femtosecond pulses in the visible 3.1 Nonlinear optics 3.1.1 Nonlinear polarization and frequency conversion 3.1.2 Phase matching 3.2 Optical parametric amplification 3.3 Noncollinear optical parametric amplifier 3.4 Considerations and experimental design of NOPA 3.4.1 Options for broadening the NOPA bandwidth 3.4.2 Experimental setup 3.5 NOPA pulse characterization 3.5.1 Second harmonic generation frequency-resolved optical gating 3.5.2 Transient grating frequency-resolved optical gating 3.6 Compression and shaping methods for NOPA pulses 3.6.1 Grating compressor 3.6.2 Prism compressor 3.6.3 Chirped mirrors 3.6.4 Detuned zero dispersion compressor 3.6.5 Deformable mirror pulse shaper 3.6.6 Liquid crystal pulse shaper 3.7 Liquid crystal pulse shaper 3.7.1 Femtosecond pulse shapers 3.7.2 Experimental design and parameters 3.7.3 Optical setup of the LC pulse shaper 3.7.4 Calibrations of the pulse shaper 3.8 Adaptive pulse compression 3.8.1 Closed loop pulse compression 3.8.2 Open loop pulse compression 3.9 Conclusions 4 Coherent optical two-dimensional spectroscopy 4.1 Introduction 4.2 Theory of third order nonlinear optical spectroscopies 4.2.1 Response function, electric fields, and signal field 4.2.2 Signal detection with spectral interferometry 4.2.3 Evaluation of two-dimensional spectra and phasing 4.2.4 Selection and classification of terms in induced nonlinear polarization 4.2.5 Oscillatory character of measured signal 4.3 Previous experimental implementations 4.4 Inherently phase-stable setup using conventional optics only 4.4.1 Manipulation of pulse pairs as a basis for stability 4.4.2 Experimental setup 4.4.3 Measurement procedure 4.4.4 Data evaluation 4.5 First experimental results 4.5.1 Demonstration of phase stability 4.5.2 2D spectrum of Nile Blue at room temperature 4.6 Summary and outlook 5 Product accumulation for ultrasensitive femtochemistry 5.1 The problem of sensitivity in femtochemistry 5.2 Accumulation for increased sensitivity 5.2.1 Comparison of conventional and accumulative sensitivity 5.2.2 Schematics and illustrative example 5.3 Experimental setup 5.4 Calibration and modeling of accumulation 5.5 Experiments on indocyanine green 5.5.1 Calibration of the setup 5.5.2 Chirped pulse excitation 5.5.3 Adaptive pulse shaping 5.6 Conclusions 6 Ultrafast photoconversion of the green fluorescent protein 6.1 Green fluorescent protein 6.2 Experimental setup for photoconversion of GFP 6.3 Calibration of the setup for GFP 6.3.1 Model for concentration dynamics of involved GFP species 6.3.2 Estimate of sensitivity 6.4 Excitation power study 6.5 Time-resolved two-color experiment 6.6 Time-delayed unshaped 400 nm – shaped 800 nm pulse excitation 6.6.1 Inducing photoconversion with chirped pulses 6.6.2 Photoconversion using third order phase pulses 6.7 Conclusions 7 Applications of the accumulative method to chiral systems 7.1 Introduction 7.2 Chiral asymmetric photochemistry 7.2.1 Continuous-wave circularly polarized light 7.2.2 Controlled asymmetric photochemistry using femtosecond laser pulses 7.3 Sensitive and fast polarimeter 7.3.1 Polarimeter setup 7.3.2 Detected signal I(t) 7.3.3 Angular amplification 7.3.4 Performance of the polarimeter 7.4 Molecular systems and mechanisms for enantioselective quantum control 7.4.1 Binaphthalene derivatives 7.4.2 Photochemical helicene formation 7.4.3 Spiropyran/merocyanine chiroptical molecular switches 7.5 Summary 8 Summary Zusammenfassung Bibliography Acknowledgements / Inhalt Liste der Veröffentlichungen 1 Einleitung 2 Grundlegende Konzepte und Instrumente 2.1 Mathematische Beschreibung von Femtosekundenlaserpulsen 2.2 Optische Größen und Messungen 2.2.1 Intensität 2.2.2 Absorbanz und Lambert- Beer Gesetz 2.3 Lasersystem 2.4 Allgemeines Softwareframework zur wissenschaftlichen Datenaufnahme und Simulation 2.4.1 Kernkomponenten 2.4.2 Programm zur Aufnahme einer einzelnen Messsequenz 2.4.3 Scanprogramm 2.4.4 Evolutionärer Algorithmus 2.4.5 Anwendungen des Softwareframeworks 2.5 Zusammenfassung 3 Erzeugung ultrabreitbandiger Femtosekundenlaserpulse im sichtbaren Spektralbereich 3.1 Nichtlineare Optik 3.1.1 Nichtlineare Polarisation und Frequenzkonversion 3.1.2 Phasenanpassung 3.2 Optisch-parametrische Verstärkung 3.3 Nichtkollinearer optisch-parametrischer Verstärker 3.4 Erwägungen und experimenteller Entwurf 3.4.1 Optionen zur Verbreiterung der Bandbreite des NOPA 3.4.2 Experimenteller Aufbau 3.5 NOPA Pulscharacterisierung 3.5.1 Second harmonic generation frequency-resolved optical gating 3.5.2 Transient grating frequency-resolved optical gating 3.6 Kompressions- und Formungsmethoden für NOPA Pulse 3.6.1 Gitterkompressor 3.6.2 Prismenkompressor 3.6.3 Chirped mirrors 3.6.4 Verstimmter Nulldispersionskompressor 3.6.5 Pulsformer auf Basis eines verformbaren Spiegels 3.6.6 Flüssigkristallpulsformer 3.7 Flüssigkristallpulsformer 3.7.1 Femtosekundenpulsformer 3.7.2 Experimenteller Entwurf und experimentelle Parameter 3.7.3 Optischer Aufbau des Flüssigkristallformers 3.7.4 Kalibrationen des Formers 3.8 Adaptive Pulskompression 3.8.1 Pulskompression in einer geschlossenen Schleife 3.8.2 Pulskompression in einer offenen Schleife 3.9 Zusammenfassung 4 Kohärente optische, zweidimensionale Spektroskopie 4.1 Einleitung 4.2 Theorie der Spektroskopien dritter Ordnung 4.2.1 Antwortfunktion, elektrische Felder und Signalfeld 4.2.2 Signalmessung mittels spektraler Interferometrie 4.2.3 Auswertung der zweidimensionalen Spektren und Phasieren 4.2.4 Auswahl und Klassifikation von Termen der induzierten nichtlinearen Polarisation 4.2.5 Oszillatorisches Verhalten des Messignals 4.3 Bisherige experimentelle Realisierungen 4.4 Inhärent phasenstabiler Aufbau auf Basis von nur konventionellen Optiken 4.4.1 Manipulation von Pulspaaren als Grundlage der Stabilität 4.4.2 Experimenteller Aufbau 4.4.3 Messprozedur 4.4.4 Datenauswertung 4.5 Erste experimentelle Ergebnisse 4.5.1 Demonstration der Phasenstabilität 4.5.2 2D Spektrum von Nilblau bei Raumtemperatur 4.6 Zusammenfassung und Ausblick 5 Akkumulation von Photoprodukten zur ultrasensitiven Messung von Femtochemie 5.1 Das Problem der Sensitivität in der Femtochemie 5.2 Akkumulation zur Erhöhung der Sensitivität 5.2.1 Vergleich Sensitivität der konventionellen und akkumulativen Methoden 5.2.2 Schema und illustratives Beispiel 5.3 Experimenteller Aufbau 5.4 Kalibration und Modellierung der Akkumulation 5.5 Experimente am Farbstoff Indocyanin Grün 5.5.1 Kalibration des Aufbaus 5.5.2 Anregung mit gechirpten Pulsen 5.5.3 Adaptive Pulsformung 5.6 Zusammenfassung 6 Ultraschnelle Photokonversion des grün fluoreszierenden Proteins 6.1 Grün fluoreszierendes Protein 6.2 Experimenter Aufbau zur Photokonversion von GFP 6.3 Kalibration des Aufbaus für GFP 6.3.1 Modell der Konzentrationsdynamiken der beteiligten GFP Spezies 6.3.2 Abschätzung der Sensitivität 6.4 Variation der Anregungsleistung 6.5 Zeitaufgelöstes Zweifarbexperiment 6.6 Anregung mit zeitverzögerten ungeformte 400 nm und geformten 800 nm Laserpulsen 6.6.1 Induktion der Photokonversion mit gechirpten Pulsen 6.6.2 Photokonversion mit Pulsen mit dritter Ordnung Phase 6.7 Zusammenfassung 7 Anwendungen der akkumulativen Methode auf chirale Systeme 7.1 Einleitung 7.2 Chirale asymmetrische Photochemie 7.2.1 Zirkular polarisiertes Dauerstrichlicht 7.2.2 Kontrollierte asymmetrische Photochemie mit Femtosekundenlaserpulsen 7.3 Sensitives und schnelles Polarimeter 7.3.1 Polarimeteraufbau 7.3.2 Messsignal I(t) 7.3.3 Winkelverstärkung 7.3.4 Leistung des Polarimeters 7.4 Molekulare Systeme und Mechanismen für enantioselektive Quantenkontrolle 7.4.1 Binaphthalinderivate 7.4.2 Photochemische Helicenbildung 7.4.3 Spiropyran/Merocyanin als chiral-optischer Schalter 7.5 Zusammenfassung 8 Zusammenfassung (englisch) Zusammenfassung (deutsch) Literaturverzeichnis Danksagungen
18

Intermolecular zero-quantum coherence detection for in vivo MR spectroscopy / In vivo MR Spektroskopie mittels intermolekularen Nullquantenkohärenzen

Balla, Dávid Zsolt January 2009 (has links) (PDF)
Nuclear magnetic resonance has numerous applications for in vivo diagnostics. However, methods requiring homogeneous magnetic fields, particularly magnetic resonance spectroscopy (MRS) techniques, have limited applicability in regions near or on anatomical boundaries that cause strong inhomogeneities. In cases where the shim system can not or just partly correct for these inhomogeneities, methods based on intermolecular multiple quantum coherence (iMQC) detection can provide an alternative solution for in vivo MRS. This dissertation presented the development, validation and application potential of a novel MRS pulse sequence detecting intermolecular zero-quantum coherences (iZQC) with special emphasis on in vivo experiments. In addition, the detection limit and spectral behaviour of iZQC-MRS under modelled realistic conditions were systematically approached for the first time. Based on the original sequence used to detect two dimensional (2D) iZQC-spectra, dubbed HOMOGENIZED, methodological development led to increased sensitivity and water suppression, and decreased T2-relaxation effects through the application of a frequency selective 90° RF-pulse in place of a non selective beta-pulse. Best water suppression was achieved by placing a pair of selective refocusing units immediately prior to the acquisition window. The same placement was found to be optimal also for single voxel localization units based on slice selective spin echo refocusing. By voxel selection before the iZQC-MRS sequence, the chemical shift artefact could be avoided. However, this led to significant residual signal from outside the voxel. Analytical derivations of signal evolution for several sequences presented in this dissertation provide useful additions to the iZQC MRS theory. In vivo applications of the developed sequence provided high quality spectra in the central nervous system of the rat, the mouse brain and in subcutaneous xenograft tumor grown on the thigh of the mouse. In all these 2D spectra, the limiting factor of the resolution in the indirect dimension was the digital sampling rate, rather than inhomogeneous line broadening. Nevertheless, linewidths of the cross-peaks were similar or narrower than along the direct axis, where the sampling rate was about ten times higher. The first MR spectroscopic investigation of the rat spinal cord at 17.6 T was performed. Through its insensitivity to macroscopic field inhomogeneities, the localized iZQC method allowed for the selection of larger voxels than conventional methods and still provided the same spectral resolution. This property was used also in tumor tissue to propel the relative signal to noise (SNR) efficiency of the iZQC spectroscopy for the first time above the SNR efficiency of a conventional sequence. Future applications for fast metabolite count in large inhomogeneous organs, like a tumor, are thinkable. Extensive simulations and phantom experiments assessed the limit of iZQC cross-peak detection in presence of local field distortions. The order of maximum volume ratio between dipole source and voxel was found to be between 0.1 % and 1 %. It is an essential conclusion of this study that the dominant effect of microscopic to mesoscopic inhomogeneities on iZQC spectra under general in vivo conditions, like for voxels greater than (1 mm)³ and metabolite concentrations in the millimolar range, is a cross-peak intensity reduction and not line broadening. The iZQC method provided resolution enhancement in comparison to conventional MRS even in the presence of clustered paramagnetic microparticles. However, the vision of iZQC spectroscopy in green leafs or the lung epithelium has to be, unfortunately, abandoned, because cross-peaks can be observed until the volume of the separating medium is much larger than the volume of local dipole sources. Intermolecular zero-quantum coherence spectroscopy remains an exciting field in NMR research on living organisms. It provides access to the monitoring of relative metabolite concentration changes in the presence of microscopic iron particles, which raises realistic hopes for new applications in studies using stained stem cells. / Magnetische Kernresonanz (NMR) hat viele diagnostische in vivo Anwendungen. Trotzdem können einige Methoden, wie die NMR-Spektroskopie (MRS), nur in Magnetfeldern mit hervorragender Homogenität angewendet werden. Das ist eine Voraussetzung, die in der Nähe von anatomischen Grenzregionen aufgrund der starken Suszeptibilitätsgradienten nicht erfüllt ist. NMR Forschungstomographen sind in der Regel mit zusätzlichen Shim-Spulen aufgerüstet, die Feldschwankungen kompensieren sollen. Wenn die durch ein Shim-System erreichte Homogenität immer noch nicht genügt, können alternative NMR-Methoden, wie etwa die Messung intermolekularer Mehrquantenkohärenzen (iMQC) die Lösung bereitstellen. Die hier vorgelegte Dissertation zeigt die Entwicklung und Validierung, sowie das Anwendungspotenzial einer neuen MRS-Pulssequenz, die intermolekulare Nullquantenkohärenzen (iZQC) detektiert und für in vivo Experimente besonders geeignet ist. Des Weiteren wurden Detektionsgrenze und spektrale Änderungen in iZQC-MRS unter simulierten realistischen Bedingungen zum ersten Mal analysiert. Ausgangspunkt der methodischen Entwicklung war die Originalsequenz für die Aufnahme zweidimensionaler iZQC-Spektren, genannt HOMOGENIZED. Die Verwendung eines frequenzselektiven 90° Pulses anstelle des beta–Pulses in HOMOGENIZED bewirkt eine Verbesserung in Sensitivität und in der Effizienz der Wasserunterdrückung, sowie eine Verminderung der T2-Relaxationseffekte. Die Wasserunterdrückung wurde durch Einfügung zweier wasserfrequenzselektiver Refokusierungspulse unmittelbar vor der Akquisition weiter optimiert. Dieselbe Position erwies sich als optimal für die „single voxel“ Lokalisierungseinheiten. Andererseits vermeidet die Durchführung der Lokalisation vor der iZQC-MRS Sequenz „chemical shift“ Artefakte auf Kosten der Lokalisierungseffizienz. Die zahlreichen analytischen Berechnungen im methodischen Teil dieser Doktorarbeit stellen wichtige Erweiterungen der iZQC MRS Theorie dar. In vivo Anwendungen der entwickelten Sequenz im zentralen Nervensystem der Ratte, im Gehirn der Maus, sowie im subkutanen Tumor am Oberschenkel der Maus, resultierten in hochwertigen Spektren. Limitierender Faktor für die spektrale Auflösung in der indirekten Dimension in diesen 2D Spektren war die digitale Akquisitionsrate und nicht der, für konventionelle MRS typische, inhomogene Linienverbreiterungseffekt. Trotz der zehnfachen Akquisitionsrate in der direkten Dimension waren die Cross-peaks in der indirekten Dimension immer schmaler. Im Rahmen dieser Doktorarbeit wurde die erste MR spektroskopische Studie im Rückenmark der Ratte bei 17.6 Tesla durchgeführt. Durch die Unempfindlichkeit gegenüber makroskopischen Feldinhomogenitäten war die Selektion größerer Voxel als mit konventionellen Techniken, ohne Verlust an spektraler Auflösung, möglich. Dies wurde auch im Tumorgewebe verwendet, um die relative Signal-zu-Rausch (SNR) Effizienz der neuen iZQC-Methode zum ersten Mal über die SNR-Effizienz einer konventionellen Technik zu treiben. Es besteht die Aussicht auf zukünftige Anwendungen für schnelle Metabolitendetektion in großen Organen und Tumoren. Die Detektionsgrenze der iZQC-Methoden in der Nähe von lokalen Dipolfeldern wurde mit aufwendigen Simulationen und Experimenten am Phantom abgeschätzt. Um einen Cross-peak zu detektieren darf der eigentliche Dipol nicht mehr als 0.1 % bis 1 % des Voxelvolums belegen. Eine wichtige Folgerung dieser Studie ist, dass unter üblichen in vivo Bedingungen, wie Voxel mit einer Größe von (1 mm)³ oder mehr und Metabolitenkonzentrationen im Millimolarbereich, mikroskopische und mesoskopische Inhomogenitäten vielmehr eine Abnahme der Cross-peak Intensität als eine Linienverbreiterung verursachen. Diese Folgerung wurde auch dadurch bestätigt, dass die iZQC-Sequenz sogar in der Gegenwart von gebündelten paramagnetischen Mikropartikeln hochwertige Spektren lieferte. Leider folgt daraus aber auch, dass die Vorstellung von iZQC-MRS in grünen Blättern oder im Epithel der Lunge verworfen werden muss. Intermolekulare Nullquantenkohärenzspektroskopie bleibt für zukünftige Entwicklungen und Anwendungen ein sehr interessanter Bereich der NMR-Forschung an lebenden Organismen. Sie ermöglicht die Beobachtung von relativen Metabolitkonzentrationen auch etwa in Proben die Eisenpartikeln enthalten. Dies weckt realistische Hoffnungen für neue MRS Studien auch bei Untersuchungen mit markierten Stammzellen.
19

LHC Phenomenology of the Three-Site Higgsless Model / LHC-Phänomenologie des Three-Site Higgsless Model

Speckner, Christian January 2009 (has links) (PDF)
The Three-Site Higgsless Model is alternative implementation of electroweak symmetry breaking which in the Standard Model is mediated by the Higgs mechanism. The main features of this model is the appearance of two new heavy vector resonances W' and Z' with masses > 380 GeV as well as a set of new heavy fermions (> 1.8 TeV). In this model, unitarity of the amplitudes for the scattering of longitudinal gauge bosons is maintained by the exchange of the W' and Z' up to a scale of ~2 TeV. Consistency with the electroweak precision observables from the LEP / LEP-II experiments implies an exceedingly small coupling of the new vector bosons to the light Standard Model fermions (about 3% of the isospin gauge coupling). In this thesis, the LHC phenomenology of this scenario is explored. To this end, we calculated the couplings and widths of all the new particles and implemented the model into the Monte-Carlo eventgenerator WHIZARD / O'Mega. With this implementation, we simulated the parton-level production of the gauge boson and fermion partners in different channels possibly suitable for their discovery at the LHC. The results are presented together with an introduction to the model and a discussion of its properties. We find that, while the fermiophobic nature of the new heavy gauge bosons does make them intrinsically difficult to observe at a collider, the LHC should be able to establish the existence of both resonances and even give some hints about the properties of their couplings which would be a vital test of the consistency of such a scenario. For the heavy fermions, we find that their large mass is accompanied by relative widths of more than $10\%$, making them ill-suited for a direct discovery at the LHC. Nevertheless, our simulations reveal that there is a part of parameter space where, given enough time, patience and a good understanding of detector and backgrounds, a direct discovery might be possible. / Das "Three-Site Higgsless Model" ist eine alternative Implementation der Elektroschwachen Symmetriebrechung, welche im Standardmodell der Teilchenphysik durch den Higgsmechanismus erfolgt. Die wesentlichen Eigenschaften dieses Modell sind das Auftreten zweier neuer schwerer Vektorresonanzen W' und Z' mit Massen > 380 GeV sowie eines Satzes von schweren (> 1.8 TeV) Fermionen. Die Unitarität der Amplituden für die Streuung longitudinaler Eichbosonen wird in diesem Modell durch den Austausch von der W' und Z' bis zu einer Skala von ~2 TeV sichergestellt. Konsistenz mit den elektroschwachen Präzisionsobservablen aus den LEP / LEP-II Experimenten bedingt eine äußerst kleine Kopplung der neuen Vektorbosonen an die leichten Fermionen des Standardmodells (etwa 3% der Isospin-Eichkopplung). In dieser Doktorarbeit wird die LHC-Phänomenologie dieses Szenarios untersucht. Zu diesem Zwecke wurden die Kopplungen und Breiten aller neuen Teilchen berechnet und das Modell in den Monte-Carlo-Generator WHIZARD / O'Mega implementiert. Diese Implementation wurde verwendet, um die Produktion der Fermion- und Eichbosonpartner auf Partonniveau in verschiedenen Kanälen zu simulieren, welche sich für die Entdeckung am LHC eignen könnten. Die Ergebnisse werden zusammen mit ein Einführung in das Modell sowie einer Diskussion der Modelleigenschaften präsentiert. Obwohl ihre fermiophobe Natur die Entdeckung der schweren Eichbosonen an Teilchenbeschleunigern grundsätzlich erschwert, zeigt sich, daß der LHC die entsprechenden Resonanzen finden kann und sogar einige Rückschlüsse auf die Stärke der fermiophoben Kopplungen (was ein wesentlicher Test der Konsistenz eines solchen Szenarios wäre) zulassen sollte. Bei der Berechnung der Breite der schweren Fermionen stellt sich heraus, daß zu der großen Masse auch relative Breiten von 10% und mehr kommen, so daß diese Teilchen sich eher schlecht für eine direkte Entdeckung am LHC eignen. Trotzdem zeigen die Simulationen daß, hinreichend viel Zeit, Geduld sowie ein gutes Verständnis von Detektor und Hintergrund vorausgesetzt, eine direkte Entdeckung zumindest in einem Teil des Parameterraums möglich ist.
20

Elektronenspektroskopie an Cd–freien Pufferschichten und deren Grenzflächen in Cu(In,Ga)(S,Se)2 Dünnschichtsolarzellen

Erfurth, Felix January 2010 (has links) (PDF)
Die in dieser Arbeit untersuchten Solarzellen auf Basis des Verbindungshalbleiters Cu(In,Ga)(S,Se)2 sind zur Zeit das vielversprechendste Materialsystem im Bereich der Dünnschichtfotovoltaik. Um damit möglichst hohe Wirkungsgrade zu erreichen, ist eine CdS–Pufferschicht notwendig, welche aufgrund ihrer Toxizität und des schlecht integrierbaren, nasschemischen Abscheideprozesses durch alternative Pufferschichten ersetzt werden soll. Im Rahmen dieser Arbeit wurden solche Cd–freien Pufferschichten in Chalkopyrit–Dünnschichtsolarzellen untersucht. Dabei wurde insbesondere deren Grenzfläche zum Absorber charakterisiert, da diese eine wesentliche Rolle beim Ladungsträgertransport spielt. Die hier untersuchten (Zn,Mg)O–Schichten stellen ein vielversprechendes Materialsystem für solche Cd–freien Pufferschichten dar. Durch den Einbau von Magnesium können die elektronischen Eigenschaften der eigentlichen ZnO–Schicht an den Absorber angepasst werden, was zu deutlich höheren Wirkungsgraden führt. Als Hauptgrund geht man dabei von einer besseren Leitungsbandanpassung an der Grenzfläche aus, welche allerdings bisher nur grob anhand der Position des Valenzbandmaximums an der Oberfläche und der optischen Volumenbandlücke abgeschätzt werden konnte. In dieser Arbeit wurde diese Grenzfläche daher mittels Photoelektronenspektroskopie und Inverser Photoelektronenspektroskopie untersucht, wobei durch die Kombination beider Methoden die Valenz– und Leitungsbandpositionen direkt bestimmt werden konnten. Es wurde gezeigt, dass der Bandverlauf an der Grenzfläche tatsächlich durch die Änderung des Mg–Gehalts der (Zn,Mg)O–Schichten optimiert werden kann, was eine wichtige Voraussetzung für einen möglichst verlustarmen Ladungstransport ist. Im Fall von reinem ZnO wurde ein „cliff“ (Stufe nach unten) beobachtet, welches mit steigendem Mg–Gehalt abnimmt schließlich ganz verschwindet. Die weitere Erhöhung des Mg–Gehalts führt zur Bildung eines „spike“ (Stufe nach oben). Dass es sich bei einer solchen Stufe nicht um die abrupte Änderung des Bandverlaufs an einer „idealen“, scharf definierten Grenzfläche handelt, haben die vorliegenden Untersuchungen der chemischen Struktur gezeigt. Infolge der dabei beobachteten Durchmischungseffekte bildet sich eine sehr komplexe Grenzfläche mit endlicher Breite aus. So wurde bei der Deposition der (Zn,Mg)O–Schichten die Bildung von In–O–Verbindungen an der Grenzfläche beobachtet. Im Fall von Zn konnte die Diffusion in den Absorber nachgewiesen werden, wodurch es dort zur Bildung von ZnS kommt. Im weiteren Verlauf dieser Arbeit wurde die Grenzfläche zwischen der (Zn,Mg)O–Pufferschicht und CuInS2–Absorbern untersucht. Durch ihre höhere Bandlücke im Vergleich zu den oben untersuchten Cu(In,Ga)(S,Se)2–Absorbern erhofft man sich eine höhere Leerlaufspannung und dadurch bessere Wirkungsgrade. Bisher liegt dieser Leistungsanstieg allerdings unter den zu erwartenden Werten, wofür eine schlechte Anpassung des Leitungsbandverlaufs an die herkömmliche CdS–Pufferschicht verantwortlich gemacht wird. Gerade für dieses Materialsystem scheint sich daher (Zn,Mg)O als Pufferschicht anzubieten, um die Bandanpassung an der Grenzfläche zu optimieren. Bei den in dieser Arbeit durchgeführten Untersuchungen an dieser Grenzfläche konnten ebenfalls Durchmischungsprozesse beobachtet werden. Zusätzlich wurde gezeigt, dass auch bei diesem Materialsystem der Bandverlauf an der Grenzfläche durch die Variation des Mg–Gehalts angepasst werden kann. Insgesamt konnte so für beide Absorbertypen ein detailliertes Bild der (Zn,Mg)O/Puffer–Grenzfläche gezeichnet werden. Für hinreichend gute Wirkungsgrade von Zellen mit „trocken“ abgeschiedenen Pufferschichten ist in den meisten Fällen eine zusätzliche, nasschemische Vorbehandlung des Absorbers notwendig, deren Einfluss auf die Absorberoberfläche ebenfalls in dieser Arbeit untersucht wurde. Dabei hat sich gezeigt, dass durch eine solche Behandlung das auf der Oberfläche angereicherte Natrium vollständig entfernt wird, was eine deutliche Steigerung desWirkungsgrades zur Folge hat.Weitere Untersuchungen führten zu dem Ergebnis, dass eine solche Reinigung der Absorberoberfläche auch durch den Prozess der Sputterdeposition selbst hervorgerufen werden kann. So kommt es neben der Ablagerung des Schichtmaterials zu deutlichem Materialabtrag von der Absorberoberfläche, wodurch diese von Adsorbaten und von auf der Oberfläche sitzenden Oxidverbindungen gereinigt wird. Untersuchungen an Absorbern, welche in einem Cd2+–haltigen Bad vorbehandelt wurden, haben gezeigt, dass der dabei abgeschiedene CdS/Cd(OH)2–Film ebenfalls fast vollständig während der Sputterdeposition entfernt wird. Abschließend wurden auf In2S3–basierende Pufferschichten charakterisiert, welche aufgrund ihrer bisher erreichten hohen Wirkungsgrade eine weitere Alternative zu CdS–Puffern darstellen. Hier wurde an der Grenzfläche zum Absorber eine starke Diffusion der Cu–Atome in die Pufferschicht hinein beobachtet, wodurch es zur Bildung von CuInS2–Phasen kommt. Messungen an bei verschiedenen Temperaturen abgeschiedenen Schichten haben gezeigt, dass diese Diffusion durch hohe Temperaturen zusätzlich verstärkt wird. Gleichzeitig konnte auch die Diffusion von Ga–Atomen nachgewiesen werden, welche allerdings wesentlich schwächer ausfällt. Analog zu den vorangegangenen Ergebnissen konnte somit auch bei diesem Materialsystem die Ausbildung einer sehr komplexen Grenzflächenstruktur beobachtet werden. / In this work investigations were accomplished on Cu(In,Ga)(S,Se)2 thin film solar cells, which represent today’s most promising thin film solar cell technology. To obtain high efficiencies a CdS buffer layer is essential in such solar cells. Because of its toxicity and the unfavorable, intermediate wet chemical deposition process, one would like to replace this layer by alternative buffer layers. In the framework of this thesis different Cd–free buffers were investigated. Thereby especially the interface to the chalkopyrite absorber was characterized because of its major role concerning the charge carrier transport. One promising material for such Cd–free buffer layers is (Zn,Mg)O. By doping the actual ZnO–layer with Magnesium, the electronic properties of the layer can be adjusted to that of the absorber layer. This results in higher efficiencies, which is attributed to a better conduction band alignment at the interface. In the past this alignment was only estimated indirectly by other groups by using the position of the valence band maximum at the surface and the optically derived band gap of the bulk material. In this work this interface was investigated by applying photoelectron spectroscopy and inverse photoelectron spectroscopy. With the combination of both methods the positions of both, the valence and conduction band, could be determined directly. It was shown that the band alignment at the interface can indeed be optimized by changing the Mg–content of the (Zn,Mg)O–layers, which is an important requirement for a low–loss charge transport. In the case of pure ZnO–layers a “cliff” (i.e. a downward step) is observed, which becomes smaller and finally vanishes with increasing Mg–content. A further increase of the Mg–content leads to the formation of a “spike” (i.e. an upward step). The investigations of the chemical structure of this interface showed that this step–like behaviour cannot be understood as an abrupt change of the band alignment. The observed intermixing processes form a complex interface structure of finite width. At this interface the formation of In–O bonds has been observed. Furthermore the diffusion of Zn into the absorber could be proved, which causes the formation of ZnS. Moreover the interface between (Zn,Mg)O–layers and CuInS2–absorbers was investigated. For these wide band gap absorbers, a higher open circuit voltage is expected compared to the above–mentioned Cu(In,Ga)(S,Se)2–absorbers, which should give better efficiencies. Up to now this enhancement of the cell performance is much lower than expected, which is attributed to a bad conduction band alignment at the interface to the conventional CdS–buffer layer. Consequently, for this absorber material (Zn,Mg)O seems to be the perfect buffer layer to tailor the band alignment at the absorber/buffer interface. During these investigations also interface diffusion processes were observed that already have been mentioned above. Additionally it was shown that also for this absorber material the band alignment at the interface can be tailored by changing the Mg–content of the buffer layer. Altogether a detailed picture of the absorber/buffer interface could be drawn for both kinds of absorbers. To obtain reasonable cell efficiencies of solar cells with dry deposited buffer layers a wet chemical treatment of the absorber surface is required in most cases. The influence of this treatment on the absorber surface has been investigated in this work as well. It was shown that such a treatment basically removes the sodium from the absorber surface, which causes an distinct enhancement of the cell efficiency. Further investigations led to the conclusion that such a cleaning of the absorber surface can also be caused by the sputter deposition process itself. Besides the deposition of the layer compound a cleaning of the surface occurs due to the removal of adsorbates and oxides sitting at the surface. Investigations on absorbers that have been treated in a Cd2+– containing wet chemical bath showed, that the thereby deposited CdS/Cd(OH)2–film was almost completely removed from the surface, too. Finally buffer layers based on In2S3 were investigated, which is another promising buffer material for those Cd–free solar cells. At this absorber/buffer interface a strong diffusion of Cu– atoms into the buffer layer was observed, accompanied by the formation of CuInS2. Measurements of layers that were prepared at different deposition temperatures showed, that this diffusion is enforced at high temperatures. At the same time the diffusion of Ga–atoms was observed likewise, although it was much weaker. All in all the formation of a very complex interface structure could be demonstrated also for this kind of buffer layer.

Page generated in 0.4159 seconds