Spelling suggestions: "subject:"decapoda (crustacea)physiology"" "subject:"decapoda (crustacea)hophysiology""
1 |
Transgenic expression of molt-inhibiting hormone from white shrimp (penaeus vannamei) in tobacco.January 2001 (has links)
by Fong Man Kim. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 127-137). / Abstracts in English and Chinese. / Thesis committee --- p.i / Acknowledgements --- p.ii / Abstract --- p.iii / List of figures --- p.viii / List of tables --- p.xi / Abbreviations --- p.xii / Table of contents --- p.xiv / Chapter CHAPTER 1 --- GENERAL INTRODUCTION --- p.1 / Chapter CHAPTER 2 --- LITERATURE REVIEW --- p.3 / Chapter 2.1 --- MIH from Penaeus vannamei --- p.3 / Chapter 2.1.1 --- General Introduction to P. vannamei --- p.3 / Chapter 2.1.1.1 --- Morphology --- p.3 / Chapter 2.1.1.2 --- Geographical distribution --- p.5 / Chapter 2.1.1.3 --- Economic value --- p.5 / Chapter 2.1.2 --- Physiology of Molting in Crustacean --- p.7 / Chapter 2.1.2.1 --- The molt cycle --- p.7 / Chapter 2.1.2.2 --- Physiological effects of ecdysone --- p.8 / Chapter 2.1.2.3 --- Regulation of the secretion of ecdysone --- p.9 / Chapter 2.1.2.4 --- Physiological effects of Molt-inhibiting hormone --- p.10 / Chapter 2.1.3 --- Cloning of MIH cDNA from P. vannamei --- p.14 / Chapter 2.1.3.1 --- Molecular identity of MIH --- p.14 / Chapter 2.1.3.2 --- Cloning of MIH cDNA --- p.15 / Chapter 2.1.3.3 --- Comparison of the cloned MIH-like cDNA with the CHH/MIH/VIH peptide family --- p.16 / Chapter 2.2 --- Plants as Bioreactors --- p.20 / Chapter 2.2.1 --- Principles & Techniques --- p.20 / Chapter 2.2.2 --- Advantages of plant bioreactors --- p.21 / Chapter 2.2.3 --- Tobacco expression system --- p.22 / Chapter 2.2.3.1 --- Tobacco as model plants --- p.22 / Chapter 2.2.3.2 --- Transformation methods --- p.23 / Chapter 2.2.4 --- Phaseolin --- p.26 / Chapter CHAPTER 3 --- EXPRESSION OF MIH IN TRANSGENIC TOBACCO --- p.28 / Chapter 3.1 --- Introduction --- p.28 / Chapter 3.2 --- Materials & Methods --- p.29 / Chapter 3.2.1 --- Chemicals --- p.29 / Chapter 3.2.2 --- Plant materials --- p.29 / Chapter 3.2.3 --- Bacterial strains and plasmid vectors --- p.30 / Chapter 3.2.4 --- Construction of chimeric genes - --- p.30 / Chapter 3.2.4.1 --- PCR amplification of MIH --- p.30 / Chapter 3.2.4.2 --- Cloning of PCR-amplified MIH into vector pET --- p.31 / Chapter 3.2.4.3 --- Cloning of MIH into vector pBK/Phas-sp and pTZ/Phas --- p.31 / Chapter 3.2.4.4 --- Cloning of MIH into binary vector pBI121 --- p.32 / Chapter 3.2.5 --- Transformation of Agrobacterium with pBI121/Phas-sp-MIH and pBI121 /Phas-MIH by electroporation --- p.39 / Chapter 3.2.6 --- Transformation of tobacco --- p.40 / Chapter 3.2.7 --- Selection of transgenic plants --- p.41 / Chapter 3.2.8 --- GUS assay --- p.42 / Chapter 3.2.9 --- Extraction of leaf genomic DNA --- p.43 / Chapter 3.2.10 --- Extraction of total RNA from developing seeds --- p.44 / Chapter 3.2.11 --- Synthesis of DIG-labeled DNA and RNA probes --- p.45 / Chapter 3.2.12 --- Southern blot analysis of genomic DNA --- p.47 / Chapter 3.2.13 --- Reverse transcriptase - polymerase chain reaction (RT-PCR) --- p.47 / Chapter 3.2.14 --- Northern blot analysis of total RNA --- p.48 / Chapter 3.2.15 --- Protein extraction and tricine-SDS-PAGE --- p.49 / Chapter 3.2.16 --- Purification of 6xHis-tag proteins --- p.50 / Chapter 3.2.17 --- Western blot analysis --- p.50 / Chapter 3.2.18 --- In vitro transcription & translation --- p.52 / Chapter 3.2.18.1 --- Construction of transcription vector containing the chimeric MIH gene --- p.52 / Chapter 3.2.18.2 --- In vitro transcription --- p.56 / Chapter 3.2.18.3 --- In vitro translation --- p.56 / Chapter 3.2.19 --- Particle bombardment --- p.57 / Chapter 3.2.19.1 --- Construction of MIH-GUSN fusion chimeric genes --- p.57 / Chapter 3.2.19.2 --- Conditions of particle bombardment --- p.63 / Chapter 3.2.20 --- Codon modification of MIH gene --- p.63 / Chapter 3.3 --- Results --- p.73 / Chapter 3.3.1 --- Construction of chimeric MIH genes --- p.73 / Chapter 3.3.2 --- "Tobacco transformation, selection and regeneration" --- p.73 / Chapter 3.3.3 --- Detection of GUS activity --- p.74 / Chapter 3.3.4 --- Southern blot analysis --- p.79 / Chapter 3.3.5 --- Detection of MIH transcript in transgenic tobacco --- p.83 / Chapter 3.3.5.1 --- RT-PCR --- p.83 / Chapter 3.3.5.2 --- Northern blot analysis --- p.86 / Chapter 3.3.6 --- Detection of MIH protein by Tricine-SDS-PAGE --- p.86 / Chapter 3.3.7 --- Detection of MIH protein by western blot analysis --- p.88 / Chapter 3.3.7.1 --- Western blot analysis using Anti-MIH antibody --- p.88 / Chapter 3.3.7.2 --- Western blot analysis using Anti-His antibody --- p.90 / Chapter 3.3.7.3 --- Western blot analysis using Anti-MIHA & Anti-MIHB antibodies --- p.90 / Chapter 3.3.8 --- Purification of 6xHis-tag proteins by Ni-NTA column --- p.94 / Chapter 3.3.8.1 --- Western blot analysis of proteins purified by Ni-NTA column --- p.97 / Chapter 3.3.9 --- In vitro transcription and translation --- p.100 / Chapter 3.3.9.1 --- In vitro transcription --- p.100 / Chapter 3.3.9.2 --- In vitro translation --- p.100 / Chapter 3.3.10 --- Particle bombardments --- p.103 / Chapter 3.3.10.1 --- Transient expression of MIH in soybean & tobacco leaves --- p.103 / Chapter CHAPTER 4 --- DISCUSSION --- p.107 / Chapter 4.1 --- Transient expression of MIH genes --- p.109 / Chapter 4.1.1 --- In vitro transcription and translation --- p.109 / Chapter 4.1.2 --- Particle bombardments --- p.220 / Chapter 4.2 --- Post-transcriptional gene silencing (PTGS) --- p.114 / Chapter 4.2.1 --- Post-transcriptional cis-inactivation --- p.114 / Chapter 4.2.2 --- Post-transcriptional trans-inactivation --- p.116 / Chapter 4.2.3 --- MIH gene and PTGS --- p.118 / Chapter 4.3 --- Codon usage --- p.119 / Chapter 4.3.1 --- Codon usage of MIH in plants --- p.120 / Chapter 4.3.2 --- Codon modification of MIH and further study on MIH expression in plants --- p.122 / Chapter 4.4 --- Post-translational protein degradation --- p.123 / Chapter 4.4.1 --- Construction of LRP-MIH fusion proteins --- p.123 / CONCLUSION --- p.125 / REFERENCES --- p.127
|
Page generated in 0.0456 seconds