• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 8
  • 8
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Origins of recrystallisation textures in intersitial free steels /

Tse, Yau-yau. January 2001 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2001. / Includes bibliographical references.
2

Origins of recrystallisation textures in intersitial: free steels

謝尤優, Tse, Yau-yau. January 2001 (has links)
published_or_final_version / Mechanical Engineering / Doctoral / Doctor of Philosophy
3

A model of the argon oxygen decarburization process for refining stainless steel and alloys

Burrow, Andrew Charles 12 January 2015 (has links)
No description available.
4

Thermodynamic and parametric modeling in the refining of high carbon ferrochromium alloys using manually operated AODs

Mukuku, Kelvin January 2017 (has links)
M.Sc. (50/50) Research project submitted to School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, South Africa July 2017 / This study and the work done involves investigating the effects of different parameters on the decarburization process of high carbon ferrochromium melts to produce medium carbon ferrochrome, and takes into account the manipulation of the different parameters and thermodynamic models based on actual plant data. Process plant data was collected from a typical plant producing medium carbon ferrochrome alloys using AODs. The molten alloy was tapped from the EAF and charged into the AOD for decarburization using oxygen and nitrogen gas mixtures. The gases were blown into the converter through the bottom tuyeres. Metal and slag samples and temperature measurements were taken throughout the duration of each heat. The decarburization process was split into two main intervals namely first stage blow (where carbon content in the metal bath is between 2-8 wt. % C) and second stage blow (carbon mass% below 2 wt. %). The first and second blow stages were differentiated by the gas flow rates whereby the first stage was signified by gas flow ratio of 2:1 (O2:N2), whilst the stage blow had 1:1 ratio of oxygen and nitrogen respectively. The effect of Cr mass% on carbon activity and how it relates to rate of decarburization was investigated, and the results indicated that an increase in Cr 66.54 – 70.5 wt. % reduced carbon activity in the metal bath from 0.336 – 0.511 for the first blowing stage. For the second blowing stage, the increase in Cr mass % of 67.22 – 71.65 wt. % resulted in an increase in C activity from 0.336 – 0.57. The trend showed that an increase in chromium composition resulted in a decrease in carbon activity and the same increase in Cr mass% resulted in reduced carbon solubility. Based on the plant data, it was observed that the rate of decarburization was time dependent, that is, the longer the decarburization time interval, the better the carbon removal from the metal bath. An interesting observation was that the change in carbon mass percent from the initial composition to the final (Δ%C) decreased from 10.18 – 8.37 wt. % with the increase in Cr/C ratio from 8.37 – 10.18. This effect was attributed to the chromium affinity for carbon and the fact that an increase in chromium content in the bath was seen to reduce activity of carbon. It was also observed that the effect of the Cr/C ratio was more significant in the first stage of the blowing process compared to the second blowing stage. A mass and energy balance model was constructed for the process under study to predict composition of the metal bath at any time interval under specified plant conditions and parameters. The model was used to predict the outcome of the process by manipulating certain parameters to achieve a set target. By keeping the gas flow rates, blowing times, gas ratios and initial metal bath temperature unchanged, the effect of initial temperature on decarburization in the converter was investigated. The results showed that the carbon end point with these parameters fixed decreased with increasing initial temperature, and this was supported by literature. The partial pressure of oxygen was observed to increase with decrease in C mass % between the first and second blow stages. For the second stage blow the partial pressure changed from 5.52*10-12 – 2.1*10-10 and carbon mass % increased from 0.754 – 2.99 wt. %. A carbon mass % of 7.87 had an oxygen partial pressure of 4.51*10-13 whilst a lower carbon content of 1.53 wt. % had an oxygen partial pressure of 8.06*10-11. The CO partial pressure however increased with increase in carbon composition in the metal bath. When the oxygen flow rate increased, a corresponding increase in the carbon removed (Δ%C) was observed. For the first stage of the blowing process, an increase in oxygen flow rate from 388.67 – 666.5Nm3 resulted in an increase in carbon removed from 5.06 – 7.28 wt. %. The second blowing stage had lower oxygen flow rates because of the carbon levels remaining in the metal bath were around +/- 2 wt. %. In this stage oxygen flow rates increased from 125 – 286.67 Nm3 and carbon removed (Δ%C) from 0.16 – 2.093 wt. %. The slag showed that an increase in basicity resulted in an increase in Cr2O3 in the slag. As the basicity increased from 0.478 – 1.281, this resulted in an increase in Cr2O3 increase from 0.26 – 0.68. Nitrogen solubility in the metal bath was investigated and it was observed that it increased with increasing Cr mass %. The increase in nitrogen solubility with increasing Cr mass % was independent of the nitrogen partial pressures. / MT2018
5

Hot model simulation of the bottom blown steelmaking process

Barrera Cardiel, Gerardo January 1985 (has links)
No description available.
6

Carbon and Oxygen reduction during vacuum annealing of stainless steel powder

Mallipeddi, Dinesh January 2012 (has links)
Stainless steel family grades are very famous for their combined corrosion resistance and high mechanical properties. These properties can be improved further by decreasing the content of impurities like carbon and oxygen. The main purpose of this research work is to study the possibility of stainless steel powder decarburization by vacuum annealing. The influence of different process parameters like treatment time, temperature, fraction size and depth of the powder layer on the decarburization process was analyzed. The investigation results showed that it is possible to achieve extra low values of carbon and oxygen in steel powder by processing it with optimum process parameters.
7

Hot model simulation of the bottom blown steelmaking process

Barrera Cardiel, Gerardo January 1985 (has links)
No description available.
8

Using FDM and FEM to simulate the decarburization in AISI 1074 during heat processing and its impact

Quan, Liang 19 May 2011 (has links)
The metallurgical processes and the products developed from these processes have been the cornerstone on which our civilizations have developed and flourished. Many of the new materials that have been developed over centuries were often the result of serendipitous occurrences. Because of the importance of new materials to the improvement of society, it is necessary to accelerate the way in which new alloys and processes are designed, developed and implemented. Over the last two decades the computational side of materials science has thrived as a result of bigger and faster computers. However, the application of new computational methods to the development of new materials and structures is still in the early stages primarily because of the complexity of most metallurgical processes. One such process is the decarburization of steel. Because of the importance of the microstructure on the mechanical properties, changes in the near surface properties are affected by the loss of carbon in the alloy. The topics investigated in this thesis include a variety of alloys and microstructures that are considered to be important in the development of a unique structure necessary for a more efficient method of recovering natural gas and oil from underground reserves as well as structures for energy absorbing systems. Since both the material application and the structure are new, this research represents an ideal opportunity to combine processing, properties, microstructure and computations to accelerate the development of these new structures. Compared to other commercially available proppants which tend to fail in demanding environments, the thin-walled hollow metal proppants are regarded more promising due to the low density and high mechanical strength. The energy-absorbing composite material manufactured by embedding said spheres in the Mg/Al matrix material is optimized by improving sphere and matrix properties at each step in the process. Ultimately the mechanical strength, fracture toughness, and energy absorption are expected to achieve a factor of 2-5 higher than previously reported. Modeling makes it economically practical to assess the targeted materials' overall properties, behaviors and the mechanical responses in conjunction with stress environment, material properties, material dimensions among other variables, before a structure is built. Additionally, more advanced modeling can enable the quantitative descriptions of more complex metallurgical phenomena such as the effects of impurity elements and deformation under complex loading conditions.

Page generated in 0.1406 seconds