Spelling suggestions: "subject:"decimal floatingpoint"" "subject:"decimal startingpoint""
1 |
Algorithms and architectures for decimal transcendental function computationChen, Dongdong 27 January 2011
Nowadays, there are many commercial demands for decimal floating-point (DFP) arithmetic operations such as financial analysis, tax calculation, currency conversion, Internet based applications, and e-commerce. This trend gives rise to further development on DFP arithmetic units which can perform accurate computations with exact decimal operands. Due to the significance of DFP arithmetic, the IEEE 754-2008 standard for floating-point arithmetic includes it in its specifications. The basic decimal arithmetic unit, such as decimal adder, subtracter, multiplier, divider or square-root unit, as a main part of a decimal microprocessor, is attracting more and more researchers' attentions. Recently, the decimal-encoded formats and DFP arithmetic units have been implemented in IBM's system z900, POWER6, and z10 microprocessors.<p>
Increasing chip densities and transistor count provide more room for designers to add more essential functions on application domains into upcoming microprocessors. Decimal transcendental functions, such as DFP logarithm, antilogarithm, exponential, reciprocal and trigonometric, etc, as useful arithmetic operations in many areas of science and engineering, has been specified as the recommended arithmetic in the IEEE 754-2008 standard. Thus, virtually all the computing systems that are compliant with the IEEE 754-2008 standard could include a DFP mathematical library providing transcendental function computation. Based on the development of basic decimal arithmetic units, more complex DFP transcendental arithmetic will be the next building blocks in microprocessors.<p>
In this dissertation, we researched and developed several new decimal algorithms and architectures for the DFP transcendental function computation. These designs are composed of several different methods: 1) the decimal transcendental function computation based on the table-based first-order polynomial approximation method; 2) DFP logarithmic and antilogarithmic converters based on the decimal digit-recurrence algorithm with selection by rounding; 3) a decimal reciprocal unit using the efficient table look-up based on Newton-Raphson iterations; and 4) a first radix-100 division unit based on the non-restoring algorithm with pre-scaling method. Most decimal algorithms and architectures for the DFP transcendental function computation developed in this dissertation have been the first attempt to analyze and implement the DFP transcendental arithmetic in order to achieve faithful results of DFP operands, specified in IEEE 754-2008.<p>
To help researchers evaluate the hardware performance of DFP transcendental arithmetic units, the proposed architectures based on the different methods are modeled, verified and synthesized using FPGAs or with CMOS standard cells libraries in ASIC. Some of implementation results are compared with those of the binary radix-16 logarithmic and exponential converters; recent developed high performance decimal CORDIC based architecture; and Intel's DFP transcendental function computation software library. The comparison results show that the proposed architectures have significant speed-up in contrast to the above designs in terms of the latency. The algorithms and architectures developed in this dissertation provide a useful starting point for future hardware-oriented DFP transcendental function computation researches.
|
2 |
Algorithms and architectures for decimal transcendental function computationChen, Dongdong 27 January 2011 (has links)
Nowadays, there are many commercial demands for decimal floating-point (DFP) arithmetic operations such as financial analysis, tax calculation, currency conversion, Internet based applications, and e-commerce. This trend gives rise to further development on DFP arithmetic units which can perform accurate computations with exact decimal operands. Due to the significance of DFP arithmetic, the IEEE 754-2008 standard for floating-point arithmetic includes it in its specifications. The basic decimal arithmetic unit, such as decimal adder, subtracter, multiplier, divider or square-root unit, as a main part of a decimal microprocessor, is attracting more and more researchers' attentions. Recently, the decimal-encoded formats and DFP arithmetic units have been implemented in IBM's system z900, POWER6, and z10 microprocessors.<p>
Increasing chip densities and transistor count provide more room for designers to add more essential functions on application domains into upcoming microprocessors. Decimal transcendental functions, such as DFP logarithm, antilogarithm, exponential, reciprocal and trigonometric, etc, as useful arithmetic operations in many areas of science and engineering, has been specified as the recommended arithmetic in the IEEE 754-2008 standard. Thus, virtually all the computing systems that are compliant with the IEEE 754-2008 standard could include a DFP mathematical library providing transcendental function computation. Based on the development of basic decimal arithmetic units, more complex DFP transcendental arithmetic will be the next building blocks in microprocessors.<p>
In this dissertation, we researched and developed several new decimal algorithms and architectures for the DFP transcendental function computation. These designs are composed of several different methods: 1) the decimal transcendental function computation based on the table-based first-order polynomial approximation method; 2) DFP logarithmic and antilogarithmic converters based on the decimal digit-recurrence algorithm with selection by rounding; 3) a decimal reciprocal unit using the efficient table look-up based on Newton-Raphson iterations; and 4) a first radix-100 division unit based on the non-restoring algorithm with pre-scaling method. Most decimal algorithms and architectures for the DFP transcendental function computation developed in this dissertation have been the first attempt to analyze and implement the DFP transcendental arithmetic in order to achieve faithful results of DFP operands, specified in IEEE 754-2008.<p>
To help researchers evaluate the hardware performance of DFP transcendental arithmetic units, the proposed architectures based on the different methods are modeled, verified and synthesized using FPGAs or with CMOS standard cells libraries in ASIC. Some of implementation results are compared with those of the binary radix-16 logarithmic and exponential converters; recent developed high performance decimal CORDIC based architecture; and Intel's DFP transcendental function computation software library. The comparison results show that the proposed architectures have significant speed-up in contrast to the above designs in terms of the latency. The algorithms and architectures developed in this dissertation provide a useful starting point for future hardware-oriented DFP transcendental function computation researches.
|
3 |
Decimal Floating-point Fused Multiply Add with Redundant Number Systems2013 May 1900 (has links)
The IEEE standard of decimal floating-point arithmetic was officially released in 2008. The new decimal floating-point (DFP) format and arithmetic can be applied to remedy the conversion error caused by representing decimal floating-point numbers in binary floating-point format and to improve the computing performance of the decimal processing in commercial and financial applications. Nowadays, many architectures and algorithms of individual arithmetic functions for decimal floating-point numbers are proposed and investigated (e.g., addition, multiplication, division, and square root). However, because of the less efficiency of representing decimal number in binary devices, the area consumption and performance of the DFP arithmetic units are not comparable with the binary counterparts.
IBM proposed a binary fused multiply-add (FMA) function in the POWER series of processors in order to improve the performance of floating-point computations and to reduce the complexity of hardware design in reduced instruction set computing (RISC) systems. Such an instruction also has been approved to be suitable for efficiently implementing not only stand-alone addition and multiplication, but also division, square root, and other transcendental functions. Additionally, unconventional number systems including digit sets and encodings have displayed advantages on performance and area efficiency in many applications of computer arithmetic.
In this research, by analyzing the typical binary floating-point FMA designs and the design strategy of unconventional number systems, ``a high performance decimal floating-point fused multiply-add (DFMA) with redundant internal encodings" was proposed. First, the fixed-point components inside the DFMA (i.e., addition and multiplication) were studied and investigated as the basis of the FMA architecture. The specific number systems were also applied to improve the basic decimal fixed-point arithmetic. The superiority of redundant number systems in stand-alone decimal fixed-point addition and multiplication has been proved by the synthesis results. Afterwards, a new DFMA architecture which exploits the specific redundant internal operands was proposed. Overall, the specific number system improved, not only the efficiency of the fixed-point addition and multiplication inside the FMA, but also the architecture and algorithms to build up the FMA itself.
The functional division, square root, reciprocal, reciprocal square root, and many other functions, which exploit the Newton's or other similar methods, can benefit from the proposed DFMA architecture. With few necessary on-chip memory devices (e.g., Look-up tables) or even only software routines, these functions can be implemented on the basis of the hardwired FMA function. Therefore, the proposed DFMA can be implemented on chip solely as a key component to reduce the hardware cost. Additionally, our research on the decimal arithmetic with unconventional number systems expands the way of performing other high-performance decimal arithmetic (e.g., stand-alone division and square root) upon the basic binary devices (i.e., AND gate, OR gate, and binary full adder). The proposed techniques are also expected to be helpful to other non-binary based applications.
|
Page generated in 0.0783 seconds