• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effekten på nedbrytningen av rötter vid tillförsel av ammonium sulfat i en granskog i sydvästra Sverige / Effect of ammonium sulphate addition on root decomposition in a Norway spruce stand in south-west Sweden

Gustafsson, Therése January 2002 (has links)
<p>Decomposition of organic matter is a critical process in the ecosystem, which involves many essential biotic and physical parts. Decomposition is therefore an important process both above and below ground. The rate of decomposition is dependent of many environmental factors for example: pH, moisture and supply of oxygen. The decomposition can therefore be affected by large scaled environmental influences, such as acidification and climatic changes. The root litter in the forest is in different ways affected by acidification, liming and manuering. Because of the important role the root system has to the whole forest ecosystem, it can be of importance to gain knowledge about how roots are affected by external environmental influences. </p><p>In the forest ecosystem fertilise the soil has become a common practice in forest management to optimise tree production. Experiments with nitrogen fertilisation have shown that the volume growths of the tree and litter supply have increased after fertilisation. There are also reports about the negative effects nitrogen fertilisation has on decomposition, which results in a decreased decomposition of organic matter. </p><p>The aim of this study is to investigate how the decomposition of organic matter, in this case roots, is affected by a large addition of ammonium sulphate. The study concentrates on to statistically evaluate important aspects on how addition of ammonium sulphate affects the decomposition of organic matter below ground in different soil layers and root diameters, and investigate the possibilities that addition of ammonium sulphate could lead to a decreasing potential of carbon mineralisation. </p><p>The study was conducted is in Skogaby, which is located in southwest Sweden in the community of Halland. Samplings of roots were made in the experimental area from the humus and mineral layer. Roots used for this study varied from less than 2mm up to 2-5mm. Decomposition of root litters were made with litterbags, which were placed in the soil in the humus and mineral layer in the original place of were the roots were collected. The results from this study showed that there appear significant differences in some of the cases between the control and ammonium sulphate treatments. The conclusion that can be drawn by this study is that the addition of ammonium sulphate, under certain conditions depending on root diameter and soil layer, comes to affect the decomposition of root litter. The addition of ammonium sulphate seems to have a positive effect on the decomposition in the initial phase, for then come to decrease in the later phases and be similar to the control areas. It can also be determined that decomposition does not seem to vary within treatments with regards to root diameter and soil layer. Regarding the question about how carbon mineralisation is affected by addition of ammonium sulphate it is probable that the addition would come to increase the mineralisation in the initial phases of the decomposition, compared with the control plots.</p>
2

Systém hodnocení půdních organických látek na základě frakcionace dle stupně hydrofilních vlastností a charakterizací frakcí využitím diferenční termické analýzy / System of evaluation of soil organic matter based on fractionation by level of hydrophilic characteristics and by characterisation of fractions with differential thermic analysis

STROSSER, Eduard January 2008 (has links)
The contemporary methods of evaluation of the soil organic matter do not sufficiently characterize its stability. The aim of this study is to develop a method for soil organic matter stability evaluation. The four different methods were tested, two based on chemical principle a two on microbiology principle. The first method is based on sequential soil organic matter fractionation by a system of solvents with increasing polarity, the second method uses oxidizers with different oxidizing efficiency. In the third method micro-organisms decompose soil organic matter in anaerobic environment as well as in the four method, but this one makes use of up gas production measuring sensors. The method of sequential extraction is not suitable for practical use, the oxidation method is preferred. The oxidation method also both microbiology methods imply that the most important part of soil organic matter is decomposed rapidly or while using weak oxidizer. This fraction is the most important for evaluation decomposability and it is characteristic for particular soils. After decomposition of this part of SOM its remnant is decomposed steady and linear or micro-organisms are not able to decompose it.
3

Effekten på nedbrytningen av rötter vid tillförsel av ammonium sulfat i en granskog i sydvästra Sverige / Effect of ammonium sulphate addition on root decomposition in a Norway spruce stand in south-west Sweden

Gustafsson, Therése January 2002 (has links)
Decomposition of organic matter is a critical process in the ecosystem, which involves many essential biotic and physical parts. Decomposition is therefore an important process both above and below ground. The rate of decomposition is dependent of many environmental factors for example: pH, moisture and supply of oxygen. The decomposition can therefore be affected by large scaled environmental influences, such as acidification and climatic changes. The root litter in the forest is in different ways affected by acidification, liming and manuering. Because of the important role the root system has to the whole forest ecosystem, it can be of importance to gain knowledge about how roots are affected by external environmental influences. In the forest ecosystem fertilise the soil has become a common practice in forest management to optimise tree production. Experiments with nitrogen fertilisation have shown that the volume growths of the tree and litter supply have increased after fertilisation. There are also reports about the negative effects nitrogen fertilisation has on decomposition, which results in a decreased decomposition of organic matter. The aim of this study is to investigate how the decomposition of organic matter, in this case roots, is affected by a large addition of ammonium sulphate. The study concentrates on to statistically evaluate important aspects on how addition of ammonium sulphate affects the decomposition of organic matter below ground in different soil layers and root diameters, and investigate the possibilities that addition of ammonium sulphate could lead to a decreasing potential of carbon mineralisation. The study was conducted is in Skogaby, which is located in southwest Sweden in the community of Halland. Samplings of roots were made in the experimental area from the humus and mineral layer. Roots used for this study varied from less than 2mm up to 2-5mm. Decomposition of root litters were made with litterbags, which were placed in the soil in the humus and mineral layer in the original place of were the roots were collected. The results from this study showed that there appear significant differences in some of the cases between the control and ammonium sulphate treatments. The conclusion that can be drawn by this study is that the addition of ammonium sulphate, under certain conditions depending on root diameter and soil layer, comes to affect the decomposition of root litter. The addition of ammonium sulphate seems to have a positive effect on the decomposition in the initial phase, for then come to decrease in the later phases and be similar to the control areas. It can also be determined that decomposition does not seem to vary within treatments with regards to root diameter and soil layer. Regarding the question about how carbon mineralisation is affected by addition of ammonium sulphate it is probable that the addition would come to increase the mineralisation in the initial phases of the decomposition, compared with the control plots.

Page generated in 0.1503 seconds