• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Plant traits as predictors of ecosystem change and function in a warming tundra biome

Thomas, Haydn John David January 2018 (has links)
The tundra is currently warming twice as rapidly as the rest of planet Earth, which is thought to be leading to widespread vegetation change. Understanding the drivers, patterns, and impacts of vegetation change will be critical to predicting the future state of tundra ecosystems and estimating potential feedbacks to the global climate system. In this thesis, I used plant traits - the characteristics of individuals and species - to investigate the fundamental structure of tundra plant communities and to link vegetation change to decomposition across the tundra biome. Plant traits are increasingly used to predict how communities will respond to environmental change. However, existing global trait relationships have largely been formulated using data from tropical and temperature environments. It is thus unknown whether these trait relationships extend to the cold extremes of the tundra biome. Furthermore, it is unclear whether approaches that simplify trait variation, such as the categorization of species into functional groups, capture variation across multiple traits. Using the Tundra Trait Team database - the largest tundra trait database ever compiled - I found that tundra plants revealed remarkable consistency in the range of resource acquisition traits, but not size traits, compared to global trait distributions, and that global trait relationships were maintained in the tundra biome. However, trait variation was largely expressed at the level of individual species, and thus the use of functional groups to describe trait variation may obscure important patterns and mechanisms of vegetation change. Secondly, plant traits are related to several key ecosystem functions, and thus offer an approach to predicting the impacts of vegetation change. Notably, understanding the links between vegetation change and decomposition is a critical research priority as high latitude ecosystems contain more than 50% of global soil carbon, and have historically formed a long-term carbon sink due to low decomposition rates and frozen soils. However, it is unclear to what extent vegetation change, and thus changes to the quality and quantity of litter inputs, drives decomposition compared to environmental controls. I used two common substrates (tea), buried at 248 sites, to quantify the relative importance of temperature, moisture and litter quality on litter decomposition across the tundra biome. I found strong linear relationships between decomposition, soil temperature and soil moisture, but found that litter quality had the greatest effect on decomposition, outweighing the effects of environment across the tundra biome. Finally, I investigated whether tundra plant communities are undergoing directional shifts in litter quality as a result of climate warming. Given the importance of litter quality for decomposition, a shift towards more or less decomposable plant litter could act as a feedback to climate change by altering decomposition rates and litter carbon storage. I combined a litter decomposition experiment with tundra plant trait data and three decades of biome-wide vegetation monitoring to quantify change in community decomposability over space, over time and with warming. I found that community decomposability increased with temperature and soil moisture over biogeographic gradients. However, I found no significant change in decomposability over time, primarily due to low species turnover, which drives the majority of trait differences among sites. Together, my thesis findings indicate that the incorporation of plant trait data into ecological analyses can improve our understanding of tundra vegetation change. Firstly, trait-based approaches capture variation in plant responses to environmental change, and enable prediction of vegetation change and ecosystem function at large scales and under future growing conditions. Secondly, my findings offer insight into the potential direction, rate and magnitude of vegetation change, indicating that despite rapid shifts in some traits, the majority of community-level trait change will be dependent upon the slower processes of migration and species turnover. Finally, my findings demonstrate that the impact of warming on both tundra vegetation change and ecosystem processes will be strongly mediated by soil moisture and trait differences among vegetation communities. Overall, my thesis demonstrates that the use of plant traits can improve climate change predictions for the tundra biome, and informs the fundamental rules that determine plant community structure and change at the global scale.
2

Impact of UV light on the plant cell wall, methane emissions and ROS production

Messenger, David James January 2009 (has links)
This study presents the first attempt to combine the fields of ultraviolet (UV) photobiology, plant cell wall biochemistry, aerobic methane production and reactive oxygen species (ROS) mechanisms to investigate the effect of UV radiation on vegetation foliage. Following reports of a 17% increase in decomposition rates in oak (Quercus robur) due to increased UV, which were later ascribed to changes in cell wall carbohydrate extractability, this study investigated the effects of decreased UV levels on ash (Fraxinus excelsior), a fast-growing deciduous tree species. A field experiment was set up in Surrey, UK, with ash seedlings growing under polytunnels made of plastics chosen for the selective transmission of either all UV wavelengths, UV-A only, or no UV. In a subsequent field decomposition experiment on end-of-season leaves, a significant increase of 10% in decomposition rate was found after one year due to removal of UV-B. However, no significant changes in cell wall composition were found, and a sequential extraction of carbohydrate with different extractants suggested no effects of the UV treatments on cell wall structure. Meanwhile, the first observations of aerobic production of methane from vegetation were reported. Pectin, a key cell wall polysaccharide, was identified as a putative source of methane, but no mechanism was suggested for this production. This study therefore tested the effect of UV irradiation on methane emissions from pectin. A linear response of methane emissions against UV irradiation was found. UV-irradiation of de-esterified pectin produced no methane, demonstrating esters (probably methyl esters) to be the source of the observed methane. Addition of ROS-scavengers significantly decreased emissions from pectin, while addition of ROS without UV produced large quantities of methane. Therefore, this study proposes that UV light is generating ROS which are then attacking methyl esters to create methane. The study also demonstrates that this mechanism has the potential to generate several types of methyl halides. These findings may have implications for the global methane budget. In an attempt to demonstrate ROS generation in vivo by UV irradiation, radio-labelling techniques were developed to detect the presence of oxo groups, a product of carbohydrate attack by ROS. Using NaB3H4, the polysaccharides of ash leaflets from the field experiment were radio-labelled, but did not show any significant decrease in oxo groups due to UV treatments. However, UV-irradiation of lettuce leaves showed a significant increase in radio-labelling, suggesting increased UV irradiation caused an increase in the production of ROS. The study shows that the use of this radio-labelling technique has the potential to detect changes in ROS production due to changes in UV levels and could be used to demonstrate a link between ROS levels and methane emissions.
3

Determinantes locais da decomposi??o foliar e de ra?zes finas em um ecossistema semi?rido do nordeste brasileiro

Costa, Uirande Oliveira 22 February 2012 (has links)
Made available in DSpace on 2014-12-17T14:33:06Z (GMT). No. of bitstreams: 1 UirandeOC_DISSERT.pdf: 1223777 bytes, checksum: 015d2e9b7467f66c5a5e5e66ec6aa6d6 (MD5) Previous issue date: 2012-02-22 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The decomposition process exercises an extensive control over the carbon cycle, affecting its availability and nutrient cycling in terrestrial ecosystems. The understanding of leaf decomposition patterns above the soil and fine roots decomposition below the soil is necessary and essential to identify and quantify more accurately the flow of energy and matter in forest systems. There is still a lack of studies and a large gap in the knowledge about what environmental variables act as local determinants over decomposition drivers. The knowledge about the decomposition process is still immature for Brazilian semiarid region. The aim of this study was to analyze the decomposition process (on leaves and fine roots) of a mixture of three native species for 12 months in a semiarid ecosystem in Northeast Brazil. We also examined whether the rate of decomposition can be explained by local environmental factors, specifically plant species richness, plant density and biomass, soil macro-arthropods species richness and abundance, amount of litterfall and fine root stock. Thirty sampling points were randomly distributed within an area of 2000 m x 500 m. To determine the decomposition rate, the litterbag technique was used and the data analysis were made with multiple regressions. There was a high degradation of dead organic matter along the experiment. Above ground plant biomass was the only environmental local factor significantly related to leaf decomposition. The density of vegetation and litter production were positively and negatively related to decay rates of fine roots, respectively. The results suggest that Caatinga spatial heterogeneity may exert strong influences over the decomposition process, taking into account the action of environmental factors related to organic matter exposure of and the consequent action of solar radiation as the decomposition process main controller in this region / A decomposi??o exerce um amplo controle sobre o ciclo do carbono, disponibilidade e ciclagem de nutrientes nos ecossistemas terrestres. A compreens?o sobre os padr?es de decomposi??o foliar acima do solo e das ra?zes finas abaixo do solo ? necess?ria e essencial para identificar e quantificar com mais precis?o os fluxos de energia e mat?ria nos sistemas florestais. Ainda h? car?ncia de estudos e uma grande lacuna no conhecimento sobre quais vari?veis ambientais atuam como determinantes locais sobre os controladores da decomposic?o. O conhecimento sobre o processo de decomposi??o ainda ? incipiente para o semi?rido brasileiro. O objetivo do presente estudo foi analisar o processo de decomposi??o (folhas e ra?zes), de uma mistura de tr?s esp?cies nativas durante 12 meses em um ecossistema semi?rido do Nordeste Brasileiro. Tamb?m foi analisado se a taxa de decomposi??o pode ser explicada por fatores ambientais locais, especificamente riqueza de esp?cies, densidade e biomassa a?rea vegetal, riqueza de esp?cies e abund?ncia de macro-artr?podes do solo, produ??o de serrapilheira e estoque de ra?zes finas. Trinta pontos amostrais foram distribu?dos aleatoriamente dentro uma ?rea de 2000 m x 500 m. Para determina??o das taxas de decomposi??o foi utilizada a t?cnica de bolsas de serapilheira (litterbags) e para as an?lises dos dados foram utilizadas regress?es m?ltiplas. Houve uma alta degrada??o da mat?ria org?nica morta. A biomassa a?rea vegetal foi o ?nico fator ambiental local significativamente relacionado ? decomposi??o foliar. A densidade da vegeta??o e a produ??o da serrapilheira foram, respectivamente, positiva e negativa significativamente relacionadas com as taxas de decaimento de ra?zes finas. Os resultados sugerem que a heterogeneidade espacial da Caatinga pode exercer fortes influ?ncias no processo de decomposi??o, tendo em vista a atua??o de fatores ambientais relacionados ? exposi??o da mat?ria org?nica e a consequente atua??o da radia??o solar como controlador do processo de decomposi??o nessa regi?o
4

Ecosystem functioning in streams : Disentangling the roles of biodiversity, stoichiometry, and anthropogenic drivers

Frainer, André January 2013 (has links)
What will happen to ecosystems if species continue to go extinct at the high rates seen today? Although ecosystems are often threatened by a myriad of physical or chemical stressors, recent evidence has suggested that the loss of species may have impacts on the functions and services of ecosystems that equal or exceed other major environmental disturbances. The underlying causes that link species diversity to ecosystem functioning include species niche complementarity, facilitative interactions, or selection effects, which cause process rates to be enhanced in more diverse communities. Interference competition, antagonistic interactions, or negative selection effects may otherwise reduce the efficiency or resource processing in diverse communities. While several of these mechanisms have been investigated in controlled experiments, there is an urgent need to understand how species diversity affects ecosystem functioning in nature, where variability of both biotic and abiotic factors is usually high. Species functional traits provide an important conceptual link between the effects of disturbances on community composition and diversity, and their ultimate outcomes for ecosystem functioning. Within this framework, I investigated relationships between the decomposition of leaf litter, a fundamental ecosystem process in stream ecosystems, and the composition and diversity of functional traits within the detritivore feeding guild. These include traits related to species habitat and resource preferences, phenology, and size. I focused on disentangling the biotic and abiotic drivers, including functional diversity, regulating ecosystem functioning in streams in a series of field experiments that captured real-world environmental gradients. Leaf decomposition rates were assessed using litter-bags of 0.5 and 10 mm opening size which allow the quantification of microbial and invertebrate + microbial contributions, respectively, to litter decomposition. I also used PVC chambers where leaf litter and a fixed number of invertebrate detritivores were enclosed in the field for a set time-period. The chemical characterisation of stream detritivores and leaf litter, by means of their nitrogen, phosphorus, and carbon concentration, was used to investigate how stoichiometric imbalance between detritivores and leaf litter may affect consumer growth and resource consumption. I found that the diversity and composition of functional traits within the stream detritivore feeding guild sometimes had effects on ecosystem functioning as strong as those of other major biotic factors (e.g. detritivore density and biomass), and abiotic factors (e.g. habitat complexity and agricultural stressors). However, the occurrence of diversity-functioning relationships was patchy in space and time, highlighting ongoing challenges in predicting the role of diversity a priori. The stoichiometric imbalance between consumers and resource was also identified as an important driver of functioning, affecting consumer growth rates, but not leaf decomposition rates. Overall, these results shed light on the understanding of species functional diversity effect on ecosystems, and indicate that the shifts in the functional diversity and composition of consumer guilds can have important outcomes for the functioning of stream ecosystems.

Page generated in 0.5259 seconds