• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ecosystem functioning in streams : Disentangling the roles of biodiversity, stoichiometry, and anthropogenic drivers

Frainer, André January 2013 (has links)
What will happen to ecosystems if species continue to go extinct at the high rates seen today? Although ecosystems are often threatened by a myriad of physical or chemical stressors, recent evidence has suggested that the loss of species may have impacts on the functions and services of ecosystems that equal or exceed other major environmental disturbances. The underlying causes that link species diversity to ecosystem functioning include species niche complementarity, facilitative interactions, or selection effects, which cause process rates to be enhanced in more diverse communities. Interference competition, antagonistic interactions, or negative selection effects may otherwise reduce the efficiency or resource processing in diverse communities. While several of these mechanisms have been investigated in controlled experiments, there is an urgent need to understand how species diversity affects ecosystem functioning in nature, where variability of both biotic and abiotic factors is usually high. Species functional traits provide an important conceptual link between the effects of disturbances on community composition and diversity, and their ultimate outcomes for ecosystem functioning. Within this framework, I investigated relationships between the decomposition of leaf litter, a fundamental ecosystem process in stream ecosystems, and the composition and diversity of functional traits within the detritivore feeding guild. These include traits related to species habitat and resource preferences, phenology, and size. I focused on disentangling the biotic and abiotic drivers, including functional diversity, regulating ecosystem functioning in streams in a series of field experiments that captured real-world environmental gradients. Leaf decomposition rates were assessed using litter-bags of 0.5 and 10 mm opening size which allow the quantification of microbial and invertebrate + microbial contributions, respectively, to litter decomposition. I also used PVC chambers where leaf litter and a fixed number of invertebrate detritivores were enclosed in the field for a set time-period. The chemical characterisation of stream detritivores and leaf litter, by means of their nitrogen, phosphorus, and carbon concentration, was used to investigate how stoichiometric imbalance between detritivores and leaf litter may affect consumer growth and resource consumption. I found that the diversity and composition of functional traits within the stream detritivore feeding guild sometimes had effects on ecosystem functioning as strong as those of other major biotic factors (e.g. detritivore density and biomass), and abiotic factors (e.g. habitat complexity and agricultural stressors). However, the occurrence of diversity-functioning relationships was patchy in space and time, highlighting ongoing challenges in predicting the role of diversity a priori. The stoichiometric imbalance between consumers and resource was also identified as an important driver of functioning, affecting consumer growth rates, but not leaf decomposition rates. Overall, these results shed light on the understanding of species functional diversity effect on ecosystems, and indicate that the shifts in the functional diversity and composition of consumer guilds can have important outcomes for the functioning of stream ecosystems.
2

Carbon Dating of Agricultural Soils and Further Understanding the Transport of CO2 Gas Using Isotopes

Zal, David 22 August 2023 (has links)
CO2 is a greenhouse gas which is significantly emitted by agricultural soils through the decomposition of plant residue and soil organic carbon. Carbon isotopes can be used in determining the source of the CO2, origin of the carbon, and the age of the CO2 emissions. This study investigates the transport of CO2 gas through agricultural soils using carbon isotopes 14C and 13C to complement concentration and production rate measurements in two comparative agricultural settings in Eastern Ontario, one of which has been modified by clearing and dredging of the adjacent riparian zone and one left undredged. Traditional radiocarbon dating measures time through loss by decay, while recent dating is based on matching measurements with the atmospheric 14CO2 signal (F14C) generated by nuclear bomb testing in the 1950s and 1960s. CO2 emissions were analyzed from soil core sections together with soil-probe gas samples and surface flux chamber samples collected from the study area. Soil cores were collected from 0- 90 cm at 7.5 cm increments and placed into IsoJar® microcosms for a period of one month. CO2 in-growth was monitored to provide production rates and samples for 14C and 13C analysis. The radiocarbon data for the microcosms showed that values increase with depth from the current fraction modern value of 1.00 F14C at the surface to an attenuated peak of 1.04 F14C at a depth of 30 to 40 cm and then decrease to values below 1.00 F14C. The data collected from the soil-probe gas showed a significant depletion in comparison to the microcosms and the surface chambers. The soil cores were subsequently analyzed by a selective leach oxidation protocol to sample decreasingly labile solid organic carbon. This involved placing the weighed soil samples into MilliQ water for 24 hours, before being passed through two sieves, 63 microns and 0.45 microns. The DOC leachate was collected and analyzed for 14C and 13C. The two solid soil fractions were then dried, treated with HCl to remove carbonate and then oxidized under vacuum with 5% H2O2 yielding CO2 and residual soil carbon for 14C and 13C. The radiocarbon analysis of these variously labile fractions, together with the microcosm and soil probe measurements, demonstrate that surface emissions at both sites are greatly dominated by CO2 from recently-sequestered labile organic carbon from the upper 30 cm with minor contribution from earlier, bomb-pulse carbon or from deeper pre-bomb carbon. No significant difference in age of emissions between the dredged and undredged sites was found.

Page generated in 0.1144 seconds