• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Site characterisation of the Whataroa Valley for the Deep Alpine Fault Drilling Project stage 2 (DFDP-2), West Coast, New Zealand

Klahn, Andrew Paul January 2011 (has links)
The Alpine Fault in western South Island ruptures every 300±100 years in large magnitude (7.8 ± 3) earthquakes and presents a major seismic hazard to New Zealand. The Deep Alpine Fault Drilling Project (DFDP) aims to drill, sample, and monitor the Alpine Fault in order to investigate the processes of earthquake genesis, rock deformation, and fault gouge formation for a tectonically active fault late in the seismic cycle. Rapid dextral reverse movements and exhumation rates on the central section of the Alpine Fault at Whataroa Valley make this a geologically favourable setting to drill and sample fault rocks at depth that can be correlated with surface exposures. The suitability of a site for stationing a major drilling operation depends upon practical issues such as the engineering geological characteristics of the proposed site, possible geohazards, and drilling logistics. This thesis presents new engineering geological, geophysical, and geomorphic investigations of the Whataroa Valley for the DFDP-2 drill site in order to provide a framework for proposed future operations. MASW, GPR and basic geotechnical methods such as test pits and face logs were conducted at various locations at the site to gain geotechnical properties and attempt to find depth to bedrock. Results showed bedrock is at least 25m deep as it was not seen in any of the GPR surveys. Correlation of the MASW and GPR profiles with freshly eroded and face logged outcrops permitted assignment of s-wave velocities to each of the gravels present and confirmation of features seen in the geophysical surveys. Vs30 values gained from the MASW classed the gravels as a soft soil in Site Class D in NZS 1170.5. Expected peak ground accelerations at the study site during an Alpine Fault earthquake are estimated at ≥0.8g. The Whataroa River is actively eroding the southern edge of the investigation area. Comparison of historic aerial photos and newly obtained LiDAR showed the river bank has moved a total of 165 m since 1948, a majority of that occurring in the past decade, 35 m of erosion occurring over a few days during early January 2011. Little correlation between heavy rainfall periods and increased erosion rates suggest changing channel dynamics play a major part in the channel migration. Modelling of the threshold discharges required to overtop the Whataroa terraces results in return periods several orders of magnitude larger than Alpine Fault earthquake recurrence intervals that result in major sediment pulses, implying that inundation from river flooding under current channel conditions is highly unlikely. Debris flows originating from the west valley wall have been identified as a possible hazard to drilling operations. Recent debris flows were easily mapped due to the changes in vegetation, whereas the remnants of historic debris flows were able to be mapped using the LiDAR. Studies of these show that they have a minimal run out distance (<100 m), and can be easily avoided by ensuring the drill site is located outside the proposed debris flow risk zone plus a 50 m buffer that has been added for caution. Current uncertainty of the fault dip and target depth of the hole causes large variation in proposed drill rig locations at the surface. All of the investigations are summarised on a hazard map used to suggest a range of favoured drill sites based on varied angle dips and drilling depths, minimizing flood, erosion and sediment inundation hazards, and specifying access routes.

Page generated in 0.0789 seconds