1 |
Sémantická segmentace v horském prostředí / Semantic Segmentation in Mountainous EnvironmentPelikán, Jakub January 2017 (has links)
Semantic segmentation is one of classic computer vision problems and strong tool for machine processing and understanding of the scene. In this thesis we use semantic segmentation in mountainous environment. The main motivation of this work is to use semantic segmentation for automatic location of geographic position, where the picture was taken. In this thesis we evaluated actual methods of semantic segmentation and we chose three of them that are appropriate for adapting to mountainous environment. We split the dataset with mountainous environment into validation, train and test sets to use for training of chosen semantic segmentation methods. We trained models from chosen methods on mountainous data. We let segments from the best trained models get evaluated in electronic survey by respondents and we evaluated these segments in process of camera orientation estimation. We showed that chosen methods of semantic segmentation are possible to use in mountainous environment. Our models are trained on 11, 5 or 4 mountainous classes and the best of them achieve on 4 class mean IU 57.4%. Models are usable in practise. We show it by their deployment as a part of camera orientation estimation process.
|
2 |
Semantic Segmentation of Iron Pellets as a Cloud ServiceChristopher, Rosenvall January 2020 (has links)
This master’s thesis evaluates automatic data annotation and machine learning predictions of iron ore pellets using tools provided by Amazon Web Services (AWS) in the cloud. The main tool in focus is Amazon SageMaker which is capable of automatic data annotation as well as building, training and deploying machine learning models quickly. Three different models was trained using SageMakers built in semantic segmentation algorithm, PSP, FCN and DeepLabV3. The dataset used for training and evaluation contains 180 images of iron ore pellets collected from LKAB’s experimental blast furnace in Luleå, Sweden. The Amazon Web Services solution for automatic annotation was shown to be of no use when annotating microscopic images of iron ore pellets. Ilastik which is an interactive learning and segmentation toolkit showed far superiority for the task at hand. Out of the three trained networks Fully-Convolutional Network (FCN) performed best looking at inference and training times, it was the quickest network to train and performed within 1% worse than the fastest in regard to inference time. The Fully-Convolutional Network had an average accuracy of 85.8% on the dataset, where both PSP & DeepLabV3 was showing similar performance. From the results in this thesis it was concluded that there are benefits of running deep neural networks as a cloud service for analysis and management ofiron ore pellets.
|
Page generated in 0.0133 seconds