• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 8
  • 1
  • Tagged with
  • 25
  • 13
  • 12
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Machine Learning Methods for Data Quality Aspects in Edge Computing Platforms

Mitra, Alakananda 12 1900 (has links)
In this research, three aspects of data quality with regard to artifical intelligence (AI) have been investigated: detection of misleading fake data, especially deepfakes, data scarcity, and data insufficiency, especially how much training data is required for an AI application. Different application domains where the selected aspects pose issues have been chosen. To address the issues of data privacy, security, and regulation, these solutions are targeted for edge devices. In Chapter 3, two solutions have been proposed that aim to preempt such misleading deepfake videos and images on social media. These solutions are deployable at edge devices. In Chapter 4, a deepfake resilient digital ID system has been described. Another data quality aspect, data scarcity, has been addressed in Chapter 5. One of such agricultural problems is estimating crop damage due to natural disasters. Data insufficiency is another aspect of data quality. The amount of data required to achieve acceptable accuracy in a machine learning (ML) model has been studied in Chapter 6. As the data scarcity problem is studied in the agriculture domain, a similar scenario—plant disease detection and damage estimation—has been chosen for this verification. This research aims to provide ML or deep learning (DL)-based methods to solve several data quality-related issues in different application domains and achieve high accuracy. We hope that this work will contribute to research on the application of machine learning techniques in domains where data quality is a barrier to success.
22

Intimt eller sexuellt deepfakematerial? : En analys av fenomenet ‘deepfake pornografi’ som digitalt sexuellt övergrepp inom det EU-rättsliga området / Intimate or sexual deepfake material? : An analysis of the phenomenon ’deepfake pornography’ as virtual sexual abuse in the legal framework of the European Union

Skoghag, Emelie January 2023 (has links)
No description available.
23

Multimedia Forensics Using Metadata

Ziyue Xiang (17989381) 21 February 2024 (has links)
<p dir="ltr">The rapid development of machine learning techniques makes it possible to manipulate or synthesize video and audio information while introducing nearly indetectable artifacts. Most media forensics methods analyze the high-level data (e.g., pixels from videos, temporal signals from audios) decoded from compressed media data. Since media manipulation or synthesis methods usually aim to improve the quality of such high-level data directly, acquiring forensic evidence from these data has become increasingly challenging. In this work, we focus on media forensics techniques using the metadata in media formats, which includes container metadata and coding parameters in the encoded bitstream. Since many media manipulation and synthesis methods do not attempt to hide metadata traces, it is possible to use them for forensics tasks. First, we present a video forensics technique using metadata embedded in MP4/MOV video containers. Our proposed method achieved high performance in video manipulation detection, source device attribution, social media attribution, and manipulation tool identification on publicly available datasets. Second, we present a transformer neural network based MP3 audio forensics technique using low-level codec information. Our proposed method can localize multiple compressed segments in MP3 files. The localization accuracy of our proposed method is higher compared to other methods. Third, we present an H.264-based video device matching method. This method can determine if the two video sequences are captured by the same device even if the method has never encountered the device. Our proposed method achieved good performance in a three-fold cross validation scheme on a publicly available video forensics dataset containing 35 devices. Fourth, we present a Graph Neural Network (GNN) based approach for the analysis of MP4/MOV metadata trees. The proposed method is trained using Self-Supervised Learning (SSL), which increased the robustness of the proposed method and makes it capable of handling missing/unseen data. Fifth, we present an efficient approach to compute the spectrogram feature with MP3 compressed audio signals. The proposed approach decreases the complexity of speech feature computation by ~77.6% and saves ~37.87% of MP3 decoding time. The resulting spectrogram features lead to higher synthetic speech detection performance.</p>
24

Machine Learning Approaches for Speech Forensics

Amit Kumar Singh Yadav (19984650) 31 October 2024 (has links)
<p dir="ltr">Several incidents report misuse of synthetic speech for impersonation attacks, spreading misinformation, and supporting financial frauds. To counter such misuse, this dissertation focuses on developing methods for speech forensics. First, we present a method to detect compressed synthetic speech. The method uses comparatively 33 times less information from compressed bit stream than used by existing methods and achieve high performance. Second, we present a transformer neural network method that uses 2D spectral representation of speech signals to detect synthetic speech. The method shows high performance on detecting both compressed and uncompressed synthetic speech. Third, we present a method using an interpretable machine learning approach known as disentangled representation learning for synthetic speech detection. Fourth, we present a method for synthetic speech attribution. It identifies the source of a speech signal. If the speech is spoken by a human, we classify it as authentic/bona fide. If the speech signal is synthetic, we identify the generation method used to create it. We examine both closed-set and open-set attribution scenarios. In a closed-set scenario, we evaluate our approach only on the speech generation methods present in the training set. In an open-set scenario, we also evaluate on methods which are not present in the training set. Fifth, we propose a multi-domain method for synthetic speech localization. It processes multi-domain features obtained from a transformer using a ResNet-style MLP. We show that with relatively less number of parameters, the proposed method performs better than existing methods. Finally, we present a new direction of research in speech forensics <i>i.e.</i>, bias and fairness of synthetic speech detectors. By bias, we refer to an action in which a detector unfairly targets a specific demographic group of individuals and falsely labels their bona fide speech as synthetic. We show that existing synthetic speech detectors are gender, age and accent biased. They also have bias against bona fide speech from people with speech impairments such as stuttering. We propose a set of augmentations that simulate stuttering in speech. We show that synthetic speech detectors trained with proposed augmentation have less bias relative to detector trained without it.</p>
25

<b>Speech Forensics Using Machine Learning</b>

Kratika Bhagtani (20699921) 10 February 2025 (has links)
<p dir="ltr">High quality synthetic speech can now be generated and used maliciously. There is a need of speech forensic tools to detect synthetic speech. Besides detection, it is important to identify the synthesizer that was used for generating a given speech. This is known as synthetic speech attribution. Speech editing tools can be used to create partially synthetic speech in which only parts of speech are synthetic. Detecting these synthetic parts is known as synthetic speech localization.</p><p dir="ltr">We first propose a method for synthetic speech attribution known as the Patchout Spectrogram Attribution Transformer (PSAT). PSAT can distinguish unseen speech synthesis methods (<i>unknown </i>synthesizers) from the methods that were seen during its training (<i>known </i>synthesizers). It achieves more than 95% attribution accuracy. Second, we propose a method known as Fine-Grain Synthetic Speech Attribution Transformer (FGSSAT) that can assign different labels to different <i>unknown </i>synthesizers. Existing methods including PSAT cannot distinguish between different <i>unknown </i>synthesizers. FGSSAT improves on existing work by doing a fine-grain synthetic speech attribution analysis. Third, we propose Synthetic Speech Localization Convolutional Transformer (SSLCT) and achieve less than 10% Equal Error Rate (EER) for synthetic speech localization. Fourth, we demonstrate that existing methods do not perform well for recent diffusion-based synthesizers. We propose the Diffusion-Based Synthetic Speech Dataset (DiffSSD) consisting of about 200 hours of speech, including synthetic speech from 8 diffusion-based open-source and 2 commercial generators. We train speech forensic methods on this dataset and show its importance with respect to recent open-source and commercial generators.</p>

Page generated in 0.0185 seconds