• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 7
  • 7
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Air permeability of balsa core, and its influence on defect formation in resin infused sandwich laminates

Cullen, Richard Kingsley January 2014 (has links)
Many large composite structures are manufactured using sandwich laminates to achieve high specific bending strength and stiffness. Examples include wind turbine blades, where self-weight becomes increasingly important as blade size increases. Resin infusion of three-dimensional sandwich laminates can result in complex resin flow paths, and subsequent defect formation, which are difficult to predict. The core material used for sandwich construction and its interaction with liquid resins may also influence the formation of defects, and in the case of balsa this effect can be used to reduce defect severity. In order to evaluate the effect of cored sandwich laminate construction on the formation of defects, this thesis concentrates on the characterisation of commonly used core materials and their interaction with liquid resin under high vacuum conditions. It also considers two numerical flow-modelling packages which are shown to be effective at the prediction of flow front convergence for monolithic laminate, but over-estimate defect severity when modelling air- permeable cored laminates. For balsa core, experiments indicate that the available pore space can act as sink for trapped air, which can aid the reduction of defects where multiple flow fronts converge due to the complexity of flow in sandwich laminates. Empirical data for air absorption and desorption rates in balsa core were obtained using a custom-designed experiment. Using these data a theoretical model was developed that can indicate available pore space, which can inform optimum processing conditions, such as time under vacuum. The diffusion coefficients obtained for air absorption and desorption in balsa are very similar, and lie in the middle of published ranges for hard woods at around 2 x 10 -7 m2/s. The methodology developed for this research project represents actual behaviour of air absorption/desorption during resin infusion, whilst other techniques do not, merely measuring diffusion of air through a sample not allowing for finite pore space. In consequence, infusion strategies can be planned more precisely because core/resin interaction is better understood. Knit line defect formation could be predicted with greater accuracy with suitably modified flow-modelling programs.
2

Electronic structure, defect formation and passivation of 2D materials

Lu, Haichang January 2019 (has links)
The emerging 2D materials are potential solutions to the scaling of electronic devices to smaller sizes with lower energy cost and faster computing speed. Unlike traditional semiconductors e.g. Si, Ge, 2D materials do not have surface dangling bonds and the short-channel effect. A wide variety of band structure is available for different functions. The aim of the thesis is to calculate the electronic structures of several important 2D materials and study their application in particular devices, using density functional theory (DFT) which provides robust results. The Schottky barrier height (SBH) is calculated for hexagonal nitrides. The SBH has a linear relationship with metal work function but the slope does not always equal because Fermi level pinning (FLP) arises. The chemical trend of FLP is investigated. Then we show that the pinning factor of Si can be tuned by inserting an oxide interlayer, which is important in the application to dopant-free Si solar cells. Apart from contact resistance, we want to improve the conductivity of the electrode. This can be done by using a physisorbed contact layer like FeCl3, AuCl3, and SbF5 etc. to dope the graphene without making the graphene pucker so these dopants do not degrade the graphene's carrier mobility. Then we consider the defect formation of 2D HfS2 and SnS2 which are candidates in the n-type part of a tunnel FET. We found that these two materials have high mobility but there are also intrinsic defects including the S vacancy, S interstitial, and Hf/Sn interstitial. Finally, we study how to make defect states chemically inactive, namely passivation. The S vacancy is the most important defect in mechanically exfoliated 2D MoS2. We found that in the most successful superacid bis(trifluoromethane) sulfonamide (TFSI) treatment, H is the passivation agent. A symmetric adsorption geometry of 3H in the -1 charge state can remove all gap states and return the Fermi level to the midgap.
3

二価スズ複合酸化物の電子構造と電気・光学特性 / Electronic structures and optical properties of Sn(II) ternary oxides

片山, 翔太 23 March 2015 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第18982号 / 工博第4024号 / 新制||工||1620 / 31933 / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 田中 功, 教授 酒井 明, 教授 邑瀬 邦明 / 学位規則第4条第1項該当
4

Electronic structures and optical properties of Sn(II) ternary oxides / 二価スズ複合酸化物の電子構造と電気・光学特性

Katayama, Shota 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18982号 / 工博第4024号 / 新制||工||1620(附属図書館) / 31933 / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 田中 功, 教授 酒井 明, 教授 邑瀬 邦明 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
5

A diffusion-viscous analysis and experimental verification of the drying behavior in nanosilver-enabled low-temperature joining technique

Xiao, Kewei 23 January 2014 (has links)
The low-temperature joining technique (LTJT) by silver sintering is being implemented by major manufacturers of power electronics devices and modules for bonding power semiconductor chips. A common die-attach material used with LTJT is a silver paste consisting of silver powder (micron- or nano-size particles) mixed in organic solvent and binder formulation. It is believed that the drying of the paste during the bonding process plays a critical role in determining the quality of the sintered bond-line. In this study, a model based on the diffusion of solvent molecules and viscous mechanics of the paste was introduced to determine the stress and strain states of the silver bond-line. A numerical simulation algorithm of the model was developed and coded in the C++ programming language. The numerical simulation allows determination of the time-dependent physical properties of the silver bond-line as the paste is being dried with a heating profile. The properties studied were solvent concentration, weight loss, shrinkage, stress, and strain. The stress is the cause of cracks in the bond-line and bond-line delamination. The simulated results were verified by complementary experiments in which the formation of cracks in bond-line and interface delamination was observed during the pressure-free drying of a die-attach nanosilver paste. Furthermore, the important drying parameters, such as drying pressure, low temperature drying time and temperature ramp rate of nanosilver LTJT process, are experimentally studied and analyzed with the numerical simulation. The simulated results were consistent with the experimental findings that the quality of sintered silver bond-line increases with increasing external drying pressure, with increasing low temperature drying time, and with decreasing temperature ramp rate. The insight offered by this modeling study can be used to optimize the process profile that enable pressure-free, low-temperature sintering of the die-attach material to significantly lower the cost of implementing the LTJT in manufacturing. / Ph. D.
6

Computation Assisted Study of Silicon Carbide: A Potential Candidate Material for Radiation Detector Devices

Kumar, Ashutosh January 2013 (has links)
No description available.
7

Influence Of Cross-Section Change During Directional Solidification On Dendrite Morphology, Macrosegregation And Defect Formation In Pb-6 wt Sb Alloy

Lacdao, Claudine 25 August 2017 (has links)
No description available.

Page generated in 0.1044 seconds