• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 6
  • 6
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Atomic level diffusion mechanisms in silicon

De Souza, Maria Merlyne January 1993 (has links)
No description available.
2

Spin-dependent Recombination in GaNAs

Puttisong, Yuttapoom January 2009 (has links)
<p>Spin filtering properties of novel GaNAs alloys are reported in this thesis. Spin-dependent recombination (SDR) in GaNAs via a deep paramagnetic defect center is intensively studied.  By using the optical orientation photoluminescence (PL) technique, GaNAs is shown to be able to spin filter electrons injected from GaAs, which is a useful functional property for integratition with future electronic devices.  The spin filtering ability is found to degrade in narrow GaNAs quantum well (QW) structures which is attributed to (i) acceleration of band-to-band recombination competing with the SDR process and to (ii) faster electron spin relaxation in the narrow QWs.  Ga interstitial-related defect centers have been found to be responsible for the SDR process by using the optically detected magnetic resonance (ODMR) technique. The defects are found to be the dominant grown-in defects in GaNAs, commonly formed during both MBE and MOCVD growths.  Methods to control the concentration of the Ga interstitials by varying doping, growth parameters and post-growth treatments are also examined.</p>
3

Atomistic modelling of functional solid oxides for industrial applications : Density Functional Theory, hybrid functional and GW-based studies

Århammar, Cecilia January 2011 (has links)
In this Thesis a set of functional solid oxides for industrial applications have been addressed by first principles and thermodynamical modelling. More specificially, measurable quantities such as Gibbs free energy, geometry and electronic structure have been calculated and compared when possible with experimental data. These are crystalline and amorphous aluminum oxide (Al2O3), Zirconia (ZrO2), magnesium oxide (MgO), indiumoxide (In2O3) and Kaolinite clay (Al2Si2O5(OH)4). The reader is provided a computation tool box, which contains a set of methods to calculate properties of oxides that are measurable in an experiment. There are three goals which we would like to reach when trying to calculate experimental quantities. The first is verification. Without verification of the theory we are utilizing, we cannot reach the second goal -prediction. Ultimately, this may be (and to some extent already is) the future of first principles methods, since their basis lies within the fundamental quantum mechanics and since they require no experimental input apart from what is known from the periodic table. Examples of the techniques which may provide verification are X-Ray Diffraction (XRD), X-ray Absorption and Emission Spectroscopy (XAS and XES), Electron Energy Loss Spectroscopy and Photo-Emission Spectroscopy (PES). These techniques involve a number of complex phenomena which puts high demands on the chosen computational method/s. Together, theory and experiment may enhance the understanding of materials properties compared to the standalone methods. This is the final goal which we are trying to reach -understanding. When used correctly, first principles theory may play the role of a highly resolved analysis method, which provides details of structural and electronic properties on an atomiclevel. One example is the use of first principles to resolve spectra of multicomponentsamples. Another is the analysis of low concentrations of defects. Thorough analysis of the nanoscale properties of products might not be possible in industry due to time and cost limitations. This leads to limited control of for example low concentrations of defects, which may still impact the final performance of the product. On example within cutting tool industry is the impact of defect contents on the melting point and stability of protective coatings. Such defects could be hardening elements such as Si, Mn, S, Ca which diffuse from a steel workpiece into the protective coating during high temperature machining. Other problems are the solving of Fe from the workpiece into the coating and reactions between iron oxide, formed as the workpiece surface is oxidized, and the protective coating. The second part of the computational toolbox which is provided to the reader is the simulation of solid oxide synthesis. Here, a formation energy formalism, most often applied to materials intended in electronics devices is applied. The simulation of Chemical Vapour Deposition (CVD) and Physical Vapor Deposition (PVD) requires good knowledge of the experimental conditions, which can then be applied in the theoretical simulations. Effects of temperature, chemical and electron potential, modelled concentration and choice of theoretical method on the heat of formation of different solid oxides with and without dopants are addressed in this work. A considerable part of this Thesis is based upon first principles calculations, more specifically, Density Functional Theory (DFT) After Kohn and Pople received the Nobel Prize in chemistry in 1998, the use of DFT for computational modelling has increased strikingly (see Fig. 1). The use of other first principles methods such as hybrid functionals and the GW approach (see abbreviations for short explanations and chapter 4.5 and 5.3.) have also become increasingly popular, due to the improved computational resources. These methods are also employed in this Thesis. / QC 20110201
4

Simulation of relaxation processes in complex condensed matter systems : Algorithmic and physical aspets

Oppelstrup, Tomas January 2009 (has links)
This thesis summarizes interrelated simulation studies of three different physical phenomena. The three topics are: simulation of work hardening of materials using dislocation dynamics, investigation of anomalous diffusion in supercooled liquids using molecular dynamics,and kinetic Monte-Carlo simulation of annealing of radiation damaged materials. All three topics require special algorithms in order to enable physically relevant simulations. The author's contributionconsists of development, implementation, and optimization of these algorithms, as well as interpretation of simulation results. / QC 20100805
5

Hydrogen diffusion in nano-sized materials : investigated by direct imaging

Bliersbach, Andreas January 2011 (has links)
The kinetics of interstitial hydrogen are of great interest and importance for metal-hydride storage, purification, fusion and fission reactor technology, material failure processes, optical sensors for hydrogen gas and many other technologies. In particular nano-sized materials motivate fascinating applications and scientific questions. If hydrogen is absorbed in vanadium it alters the band structure around the Fermi energy. These modifications of the band structurelead to a change in the absorptance of vanadium which are in first order approximation proportional to the concentration. We present a methodto quantify chemical diffusion of hydrogen in nano-sized materials.The induced changes in the absorptance of vanadium hydride (VHx) thin-films are observed visually and in real-time as a function of position.Concentration profiles and their evolution in time, during chemicaldiffusion, were measured down to a hydrogen content corresponding tojust a few effective monolayers, randomly distributed within VHx. For concentrations reached via phase transitions distinct diffusional behavior was found, where a diffusion-front, a strong concentration gradient, migrates in the direction of the diffusive hydrogen flux. The results show that decreased size strongly influences the energy landscape and reveal different rate limiting steps for absorption and desorption.
6

Insights into Materials Properties from Ab Initio Theory : Diffusion, Adsorption, Catalysis &amp; Structure

Blomqvist, Andreas January 2010 (has links)
In this thesis, density functional theory (DFT) calculations and DFT based ab initio molecular dynamics simulations have been employed in order to gain insights into materials properties like diffusion, adsorption, catalysis, and structure. In transition metals, absorbed hydrogen atoms self-trap due to localization of metal d-electrons. The self-trapping state is shown to highly influence hydrogen diffusion in the classical over-barrier jump temperature region. Li diffusion in Li-N-H systems is investigated. The diffusion in Li3N is shown to be controlled by the concentration of vacancies. Exchanging one Li for H (Li2NH), gives a system where the diffusion no longer is dependent on the concentrations of vacancies, but instead on N-H rotations. Furthermore, exchanging another Li for H (LiNH2), results in a blockade of Li diffusion. For high-surface area hydrogen storage materials, metal organic frameworks and covalent organic frameworks, the hydrogen adsorption is studied. In metal organic frameworks, a Li-decoration is also suggested as a way to increase the hydrogen adsorption energy. In NaAlH4 doped with transition metals (TM), the hypothesis of TM-Al intermetallic alloys as the main catalytic species is supported. The source of the catalytic effect of carbon nanostructures on hydrogen desorption from NaAlH4 is shown to be the high electronegativity of the carbon nanostructures. A space-group optimized ab initio random structure search method is used to find a new ground state structure for BeC2 and MgC2. The fast change between the amorphous and the crystalline phase of GeSbTe phase-change materials is suggested to be due to the close resemblance between the local amorphous structure and the crystalline structure. Finally, we show that more than 80% of the voltage in the lead acid battery is due to relativistic effects. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 702

Page generated in 0.0811 seconds