Spelling suggestions: "subject:"efeitos resistivos"" "subject:"efeitos esistivos""
1 |
Avalia??o de defeitos resistivos de manufatura em SRAMs frente ao fen?meno de NBTIMartins, Marco T?lio Gon?alves 27 May 2016 (has links)
Submitted by PPG Engenharia El?trica (engenharia.pg.eletrica@pucrs.br) on 2017-10-03T14:30:54Z
No. of bitstreams: 1
dissertacao_Marco_tulio.pdf: 5515221 bytes, checksum: 0531f41d66bffa4a34ad4958a41c2d61 (MD5) / Approved for entry into archive by Caroline Xavier (caroline.xavier@pucrs.br) on 2017-10-04T13:10:44Z (GMT) No. of bitstreams: 1
dissertacao_Marco_tulio.pdf: 5515221 bytes, checksum: 0531f41d66bffa4a34ad4958a41c2d61 (MD5) / Made available in DSpace on 2017-10-04T13:17:57Z (GMT). No. of bitstreams: 1
dissertacao_Marco_tulio.pdf: 5515221 bytes, checksum: 0531f41d66bffa4a34ad4958a41c2d61 (MD5)
Previous issue date: 2016-05-27 / With advances in technology and miniaturization of CMOS, reliability during the life cycle
of Integrated Circuit (IC) becomes a complex concern for critical applications. Miniaturization
brings many benefits as high performance, power consumption and increase
number of functions inside of IC. However, alongside with these, the benefits for increase
of interconnections and density of such SoCs create new challenges for the industry. Moreover, a chip needs to store more and more information, resulting in the fact that
SRAM occupy the greatest part of SoCs. Consequently, technology advances need to increase
the transistor?s density, turnning them a critical concern for testing and reliability
to be analysed after manufacturing, since it creates new types of defects. Defects during
manufacture process, as well as Negative Bias Temperature Instability (NBTI), Hot
Carrier Injection (HCI) and Electromagnetic Interference (EMI) phenomena represent important
challenges that must be addressed at an early stages and over the IC?s life-time.
In this context, understanding these phenomena and how they affect technologies below
65nm is essential to ensure reliability required for critical applications. In addition, another source of defects is related to process variations during manufacture.
Such defects, like resistive-open and resistive-bridge, appear as the most incident. These
defects occur due to small geometric changes in the cell, resulting in static and dynamic
failures. Depending on the size of defect they can be considered as weak-defects, which
do not result in faulty behaviour at logic level and are not sensitized in conventional
manufacturing tests. Note that dynamic faults are considered most responsible for testescapes
during manufacturing test. Another important phenomena that affects the reliability of ICs over time is NBTI, causing
the aging of SRAMs. In this context, this work proposes to analyze the impact of
NBTI in SRAM cells with weak resistive-open and resistive-bridge defects that can escape
manufacturing tests due to their dynamic behaviour but, with aging, may become
dynamic faults over time. / Com o avan?o tecnol?gico e a miniaturiza??o da tecnologia CMOS, garantir a confiabilidade
durante a vida ?til de Circuitos Integrados (CI) tem se tornado um ponto extremamente
complexo e importante para aplica??es consideradas cr?ticas. Muitos s?o os
benef?cios que esses avan?os trouxeram, como aumento do desempenho, frequ?ncia de
opera??o, CIs com capacidade para novas e mais complexas funcionalidades entre outros.
Entretanto, com o aumento do n?mero de interconex?es e densidade dos System-on-chip
(SoC) novos desafios surgiram e necessitam ser solucionados para que estes avan?os possam
continuar. Avan?os tecnol?gicos possibilitaram a fabrica??o de componentes com uma maior densidade
de transistores em uma pequena ?rea de sil?cio, tornando-se um ponto cr?tico para
o teste e an?lise da confiabilidade ap?s sua fabrica??o, uma vez que esse processo de
fabrica??o gera novos tipos de defeitos. Neste sentido, defeitos do tipo resistive-open e
resistive-bridge aparecem como os mais prov?veis. Esses defeitos ocorrem devido a pequenas
mudan?as geom?tricas das c?lulas e podem causar falhas est?ticas, bem como
falhas din?micas. Da mesma forma, fen?menos como Negative Bias Temperature Instability
(NBTI), Positive Bias Temperature Instability (PBTI), Hot Carrier Injection (HCI)
e Electromagnetic Interference (EMI) representam importantes desafios que obrigatoriamente
devem ser tratados desde a fase inicial de projeto de CIs, bem como durante toda a
sua vida ?til. Assim, compreender esses fen?menos e como os mesmos afetam tecnologias
abaixo de 65nm ? considerado fundamental a fim de garantir a confiabilidade exigida para
aplica??es consideradas cr?ticas. Neste contexto, esse trabalho visa avaliar o impacto de defeitos resistivos do tipo resistiveopen
e resistive-bridge nas c?lulas de mem?ria do tipo 6T, que passaram nos testes de
manufatura, mas que, ao longo dos anos manifestaram falha devido a presen?a do fen?meno
de NBTI. Esses defeitos foram modelados atrav?s da inser??o de resist?ncias em
determinados pontos da c?lula de mem?ria. Foi observado que defeitos do tipo resistive-open e resistive-bridge quando presentes entre
os inversores de uma c?lula de mem?ria e n?o detectados durante os testes de manufatura,
resultaram em falha nas opera??es de leitura da c?lula ao longo dos anos quando na
presen?a de NBTI. Essa falha apresenta-se inicialmente com um comportamento din?mico
e, de acordo com o envelhecimento da c?lula, passa a comporta-se como est?tica. Essa
situa??o compromete a confiabilidade da c?lula, uma vez que o tempo de vida estimado
da c?lula ser? inferior ao projetado.
|
2 |
Development of a test methodology for FinFET-Based SRAMsMedeiros, Guilherme Cardoso 17 August 2017 (has links)
Submitted by Caroline Xavier (caroline.xavier@pucrs.br) on 2017-09-11T13:09:26Z
No. of bitstreams: 1
DIS_GUILHERME_CARDOSO_MEDEIROS_COMPLETO.pdf: 10767866 bytes, checksum: f8ce0a0593916dec149c9417c21ff36e (MD5) / Made available in DSpace on 2017-09-11T13:09:26Z (GMT). No. of bitstreams: 1
DIS_GUILHERME_CARDOSO_MEDEIROS_COMPLETO.pdf: 10767866 bytes, checksum: f8ce0a0593916dec149c9417c21ff36e (MD5)
Previous issue date: 2017-08-17 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior - CAPES / Miniaturiza??o tem sido adotada como o principal objetivo da ind?stria de
Circuitos Integrados (CIs) nos ?ltimos anos, uma vez que agrega muitos benef?cios
tais como desempenho, maior densidade, e baixo consumo de energia. Junto com a
miniaturiza??o da tecnologia CMOS, o aumento na quantidade de dados a serem
armazenados no chip causaram a amplia??o do espa?o ocupado por mem?rias do
tipo Static Random-Access Memory (SRAM) em System-on-Chips (SoCs).
Tal miniaturiza??o e evolu??o da nanotecnologia proporcionou muitas revolu??es
na ind?stria de semicondutores, tornando necess?rio tamb?m a melhoria no
processo de fabrica??o de CIs. Devido a sensibilidade causada pela miniaturiza??o
e pelas variabilidades de processo de fabrica??o, eventuais defeitos introduzidos durante
fabrica??o podem danificar o CI, afetando o n?vel de confiabilidade do CI e
causando perdas no rendimento por die fabricado.
A miniaturiza??o adotada pela ind?stria de semicondutores impulsionou a
pesquisa de novas tecnologias visando a substitui??o de transistores do tipo CMOS.
Transistores FinFETs, devido a suas propriedades el?tricas superiores, emergiram
como a tecnologia a ser adotada pela ind?stria.
Com a fabrica??o de mem?rias utilizando a tecnologia FinFET, surge a preocupa??o
com testes de mem?ria, uma vez que modelos de falhas e metodologias de
teste utilizados para tecnologias planares podem n?o ser suficientes para detectarem
todos os defeitos presented em tecnologias multi-gate. Uma vez que esta nova tecnologia
pode ser afetada por novos tipos de falhas, testes que dependem da execu??o
de opera??es, m?todos de endere?amento, checagem de padr?es, e outros tipos de
condi??es de est?mulo, podem deixar de serem estrat?gias confi?veis para o teste
dos mesmos.
Neste contexto, este trabalho de mestrado prop?e uma metodologia baseada
em hardware para testar mem?rias em FinFET que monitore par?metros do bloco
de mem?ria e gere sinais baseados nessas caracter?sticas. Atrav?s do uso de sensores
que monitoram os par?metros do circuito (como consumo de corrente, tens?o nas
bit lines) e detectam mudan?as dos padr?es monitorados, os sensores criam pulsos
que representam essas varia??es. Esses pulsos s?o modulados usando t?cnicas de
modula??o. Uma vez que defeitos resistivos alteram os par?metros monitorados,
c?lulas afetadas por esses defeitos apresentam diferentes sinais modulados, validando
a metodologia proposta e permitindo a detec??o destes defeitos e consequentemente
aumentando o yield de fabrica??o e a confiabilidade do circuito ao longo da sua
vida.
A metodologia baseada em hardware proposta neste trabalho foi implementada
utilizando sensores integrados no pr?prio CI, e foi dividida em duas abordagens:
monitoramento de consumo de corrente e monitoramento da tens?o nas bit lines.
Cada abordagem foi validada com a inje??o de 12 defeitos resistivos de diferentes
naturezas e localiza??es, a ap?s validados considerando diferentes temperaturas de
opera??o e o impacto da varia??o de processo de fabrica??o. / Miniaturization has been the industry?s main goal over the last few years,
as it brings benefits such as high performance and on-chip integration as well as
power consumption reduction. Alongside the constant scale-down of Integrated Circuits
(ICs) technology, the increasing need to store more and more information has
resulted in the fact that Static Random Access Memories (SRAMs) occupy great
part of Systems-on-Chip (SoCs).
The constant evolution of nanotechnology brought many revolutions to semiconductors,
making it also necessary to improve the integrated circuit manufacturing
process. Therefore, the use of new, complex processing steps, materials, and
technology has become necessary.
The technology-shrinking objective adopted by the semiconductor industry
promoted research for technologies to replace CMOS transistors. FinFET transistors,
due to their superior electrical properties, have emerged as the technology most
probably to be adopted by the industry.
However, one of the most critical downsides of technology scaling is related
to the non-determinism of device?s electrical parameters due to process variation.
Miniaturization has led to the development of new types of manufacturing defects
that may affect IC reliability and cause yield loss.
With the production of FinFET-based memories, there is a concern regarding
embedded memory test and repair, because fault models and test algorithms
used for memories based on conventional planar technology may not be sufficient
to cover all possible defects in multi-gate memories. New faults that are specific to
FinFETs may exist, therefore, current test solutions, which rely on operations executing
specific patterns and other stressing conditions, may not stand to be reliable
tools for investigating those faults.
In this context, this work proposes a hardware-based methodology for testing
memories implemented using FinFET technology that monitors aspects of the
memory array and creates output signals deriving from the behavior of these characteristics.
Sensors monitor the circuit?s parameters and upon changes from their
idle values, create pulses that represent such variations. These pulses are modulated
applying the pulse width modulation techniques. As resistive defects alter current
consumption and bit line voltages, cells affected by resistive defects present altered
modulated signals, validating the proposed methodology and allowing the detection
of these defects. This further allows to increase the yield after manufacturing
and circuit reliability during its lifetime. Considering how FinFET technology has
evolved and the likelihood that ordinary applications will employ FinFET-based
circuits in the future, the development of techniques to ensure circuit reliability has
become a major concern.
The presented hardware-based methodology, which was implemented using
On-Chip Sensors, has been divided in two approaches: monitoring current consumption
and monitoring the voltage level of bit lines. Each approach has been validated
by injecting a total of 12 resistive defects, and evaluated considering different operation
temperatures and the impact of process variation.
|
Page generated in 0.0472 seconds