• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 9
  • 1
  • 1
  • Tagged with
  • 27
  • 27
  • 9
  • 8
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deformation Quantization over a Z-graded base

Altinay-Ozaslan, Elif January 2017 (has links)
We investigate the problem how to describe the equivalence classes of formal deformations of a symplectic manifold $M$ in the case when we have several deformation parameters $\ve_1, \ve_2, \dots, \ve_g$ of non-positive degrees. We define formal deformations of $M$ over the base ring $\bbC[[\ve, \ve_1, \dots, \ve_g]]$ as Maurer-Cartan elements of the differential graded Lie algebra $(\ve, \ve_1, \dots, \ve_g) \sPD^\bullet(M)[[\ve, \ve_1, \dots, \ve_g]]$ where $\sPD^\bullet(M)$ denotes the algebra of polydifferential operators on $M$. The interesting feature of such deformations is that, if at least one formal parameter carries a non-zero degree, then the resulting Maurer-Cartan element corresponds to a $\bbC[[\ve, \ve_1, \dots, \ve_g]]$-multilinear $A_\infty$-structure on the graded vector space $\cO(M)[[\ve, \ve_1, \dots, \ve_g]]$ with the zero differential, where $\cO(M)$ is the algebra of smooth complex-valued functions $M$. This dissertation focuses on formal deformations of $\cO(M)$ with the base ring $\bbC[[\ve, \ve_1, \dots, \ve_g]]$ such that corresponding MC elements $\mu$ satisfy these two conditions: The Kodaira-Spencer class of $\mu$ is $\ve \al$ and $\mu$ satisfies the equation $\mu \rvert_{\ve=0} =0$. The main result of this study gives us a bijection between the set of isomorphism classes of such deformations and the set of all degree 2 vectors of the graded vector space \, $\bigoplus_{q \geq 0} \, (\ve, \ve_1, \dots, \ve_g) \, H^q(M, \bbC)[[\ve, \ve_1, \dots, \ve_g]]$ where $H^\bullet(M, \bbC)$ is the singular cohomology of $M$ with coefficients in $\bbC$ and every vector of $H^q(M, \bbC)$ carries degree $q$. / Mathematics
2

Deformation theory of a birationally commutative surface of Gelfand-Kirillov dimension 4

Campbell, Chris John Montgomery January 2016 (has links)
Let K be the field of complex numbers. In this thesis we construct new examples of noncommutative surfaces of GK-dimension 4 using the language of formal and infinitesimal deformations as introduced by Gerstenhaber. Our approach is to find families of deformations of a certain well known GK-dimension 4 birationally commutative surface defined by Zhang and Smith in unpublished work cited in [YZ06], which we call A. Let B* and K* be respectively the bar and Koszul complexes of a PBW algebra C = KhV / (R) . We construct a graph whose vertices are elements of the free algebra KhV i and edges are relations in R. We define a map m2 : B2 ! K2 that extends to a chain map m* : B* → K*. This map allows the Gerstenhaber bracket structure to be transferred from the bar complex to the Koszul complex. In particular, m2 provides a mechanism for algorithmically determining the set of infinitesimal deformations with vanishing primary obstruction. Using the computer algebra package 'Sage' [Dev15] and a Python package developed by the author [Cam], we calculate the degree 2 component of the second Hochschild cohomology of A. Furthermore, using the map m2 we describe the variety U ⊆ HH2/2 (A) of infinitesimal deformations with vanishing primary obstruction. We further show that U decomposes as a union of 3 irreducible subvarieties Vg, Vq and Vu. More generally, let C be a Koszul algebra with relations R, and let E be a localisation of C at some (left and right) Ore set. Since R is homogeneous in degree two, there is an embedding R ,↪ C⊗C and in the following we identify R with its (nonzero) image under this map. We construct an injective linear map ~⋀ : HH²(C) → HH²(E) and prove that if f ∈ HH²(E) satisfies f(R) ⊆ C then f ∈ Im(~⋀). In this way we describe a relationship between infinitesimal deformations of C with those of E. Rogalski and Sierra [RS12] have previously examined a family of deformations of A arising from automorphism of the surface P1 X P1. By applying our understanding of the map ~⋀ we show that these deformations correspond to the variety of infinitesimal deformations Vg. Furthermore, we show that deformations defined similarly by automorphisms of other minimal rational surfaces also correspond to infinitesimal deformations lying in Vg. We introduce a new family of deformations of A, which we call Aq. We show that elements of this family have families of deformations arising from certain quantum analogues of geometric automorphisms of minimal rational surfaces, as defined by Alev and Dumas. Furthermore, we show that after taking the semi-classical limit q → 1 we obtain a family of deformations of A whose infinitesimal deformation lies in Vq. Finally, we apply a heuristic search method in the space of Hochschild 2-cocycles of A. This search yields another new family of deformations of A. We show that elements of this family are non-noetherian PBW noncommutative surfaces with GK-dimension 4. We further show that elements of this family can have as function skew field the division ring of the quantum plane Kq(u; v), the division ring of the first Weyl algebra D1(K) or the commutative field K(u; v).
3

On a Noncommutative Deformation of the Connes--Kreimer Algebra

grosse@doppler.thp.univie.ac.at 11 September 2001 (has links)
No description available.
4

Flexibility and rigidity of three-dimensional convex projective structures

Ballas, Samuel Aaron 23 October 2013 (has links)
This thesis investigates various rigidity and flexibility phenomena of convex projective structures on hyperbolic manifolds, particularly in dimension 3. Let M[superscipt n] be a finite volume hyperbolic n-manifold where [mathematical equation] and [mathematical symbol] be its fundamental group. Mostow rigidity tells us that there is a unique conjugacy class of discrete faithful representation of [mathematical symbol] into PSO(subscript n, 1). In light of this fact we examine when this representations can be non-trivially deformed into the larger Lie group of PGL[subscript n+1](R) as well as the relationship between these deformations and convex projective structures on M. Specifically, we show that various two-bridge knots do not admit such deformations into PGL[subscript 4](R) satisfying certain boundary conditions. We subsequently use this result to show that certain orbifold surgeries on amphicheiral knot complements do admit deformations. / text
5

Realizability of tropical lines in the fan tropical plane

Haque, Mohammad Moinul 16 September 2013 (has links)
In this thesis we construct an analogue in tropical geometry for a class of Schubert varieties from classical geometry. In particular, we look at the collection of tropical lines contained in the fan tropical plane. We call these tropical spaces "tropical Schubert prevarieties", and develop them after creating a tropical analogue for flag varieties that we call the "flag Dressian". Having constructed this tropical analogue of Schubert varieties we then determine that the 2-skeleton of these tropical Schubert prevarieties is realizable. In fact, as long as the lift of the fan tropical plane is in general position, only the 2-skeleton of the tropical Schubert prevariety is realizable. / text
6

Geometric And Material Stability Criteria For Material Models In Hyperelasticity

Patil, Kunal D 06 1900 (has links) (PDF)
In the literature, there are various material models proposed so as to model the constitutive behavior of hyperelastic materials for example, St. Venant-Kirchho_ model, Mooney-Rivlin model etc. The stability of such material models under various states of deformation is of important concern, and generally stability analysis is conducted in homogeneous states of deformation. Within hyperelasticity, instabilities can be broadly classified as geometrical and material types. Geometrical instabilities such as buckling, symmetric bifurcation etc. are of physical origin, and lead to multiple solutions at critical stretch. Material instability is a aw in the material model and leads to unphysical solutions at the onset. It is required that the constitutive model should be materially stable i.e., should not give unphysical results, and be able to predict correctly the onset of geometrical instabilities. Certain constitutive restrictions proposed in the literature are inadequate to characterize such instabilities. In the work, we propose stability criteria which will characterize geometrical as well as material instabilities. A new elasticity tensor is defined, which is found to characterize material instability adequately. In order to investigate the validity of proposed stability criteria, three important constitutive models of hyperelasticity viz., St. Venant-Kirchho_, compressible Mooney-Rivlin and compressible Ogden models are investigated for stability.
7

Universal deformation rings of modules for algebras of dihedral type of polynomial growth

Talbott, Shannon Nicole 01 July 2012 (has links)
Deformation theory studies the behavior of mathematical objects, such as representations or modules, under small perturbations. This theory is useful in both pure and applied mathematics and has been used in the proof of many long-standing problems. In particular, in number theory Wiles and Taylor used universal deformation rings of Galois representations in the proof of Fermat's Last Theorem. The main motivation for determining universal deformation rings of modules for finite dimensional algebras is that deep results from representation theory can be used to arrive at a better understanding of deformation rings. In this thesis, I study the universal deformation rings of certain modules for algebras of dihedral type of polynomial growth which have been completely classied by Erdmann and Skowronski using quivers and relations. More precisely, let κ be an algebraically closed field and let λ be a κ-algebra of dihedral type which is of polynomial growth. In this thesis, first classify all λ-modules whose stable endomorphism ring is isomorphic to κ and which are given combinatorially by strings, and then I determine the universal deformation ring of each of these modules.
8

Nonlinear analysis of smart composite plate and shell structures

Lee, Seung Joon 29 August 2005 (has links)
Theoretical formulations, analytical solutions, and finite element solutions for laminated composite plate and shell structures with smart material laminae are presented in the study. A unified third-order shear deformation theory is formulated and used to study vibration/deflection suppression characteristics of plate and shell structures. The von K??rm??n type geometric nonlinearity is included in the formulation. Third-order shear deformation theory based on Donnell and Sanders nonlinear shell theories is chosen for the shell formulation. The smart material used in this study to achieve damping of transverse deflection is the Terfenol-D magnetostrictive material. A negative velocity feedback control is used to control the structural system with the constant control gain. The Navier solutions of laminated composite plates and shells of rectangular planeform are obtained for the simply supported boundary conditions using the linear theories. Displacement finite element models that account for the geometric nonlinearity and dynamic response are developed. The conforming element which has eight degrees of freedom per node is used to develop the finite element model. Newmark's time integration scheme is used to reduce the ordinary differential equations in time to algebraic equations. Newton-Raphson iteration scheme is used to solve the resulting nonlinear finite element equations. A number of parametric studies are carried out to understand the damping characteristics of laminated composites with embedded smart material layers.
9

Deformations of Quantum Symmetric Algebras Extended by Groups

Shakalli Tang, Jeanette 2012 May 1900 (has links)
The study of deformations of an algebra has been a topic of interest for quite some time, since it allows us to not only produce new algebras but also better understand the original algebra. Given an algebra, finding all its deformations is, if at all possible, quite a challenging problem. For this reason, several specializations of this question have been proposed. For instance, some authors concentrate their efforts in the study of deformations of an algebra arising from an action of a Hopf algebra. The purpose of this dissertation is to discuss a general construction of a deformation of a smash product algebra coming from an action of a particular Hopf algebra. This Hopf algebra is generated by skew-primitive and group-like elements, and depends on a complex parameter. The smash product algebra is defined on the quantum symmetric algebra of a nite-dimensional vector space and a group. In particular, an application of this result has enabled us to find a deformation of such a smash product algebra which is, to the best of our knowledge, the first known example of a deformation in which the new relations in the deformed algebra involve elements of the original vector space. Finally, using Hochschild cohomology, we show that these deformations are nontrivial.
10

Nonlinear analysis of smart composite plate and shell structures

Lee, Seung Joon 29 August 2005 (has links)
Theoretical formulations, analytical solutions, and finite element solutions for laminated composite plate and shell structures with smart material laminae are presented in the study. A unified third-order shear deformation theory is formulated and used to study vibration/deflection suppression characteristics of plate and shell structures. The von K??rm??n type geometric nonlinearity is included in the formulation. Third-order shear deformation theory based on Donnell and Sanders nonlinear shell theories is chosen for the shell formulation. The smart material used in this study to achieve damping of transverse deflection is the Terfenol-D magnetostrictive material. A negative velocity feedback control is used to control the structural system with the constant control gain. The Navier solutions of laminated composite plates and shells of rectangular planeform are obtained for the simply supported boundary conditions using the linear theories. Displacement finite element models that account for the geometric nonlinearity and dynamic response are developed. The conforming element which has eight degrees of freedom per node is used to develop the finite element model. Newmark's time integration scheme is used to reduce the ordinary differential equations in time to algebraic equations. Newton-Raphson iteration scheme is used to solve the resulting nonlinear finite element equations. A number of parametric studies are carried out to understand the damping characteristics of laminated composites with embedded smart material layers.

Page generated in 0.1267 seconds