• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 163
  • 35
  • 20
  • 20
  • 20
  • 20
  • 20
  • 20
  • 8
  • 4
  • 3
  • 2
  • Tagged with
  • 301
  • 301
  • 50
  • 42
  • 37
  • 30
  • 27
  • 26
  • 25
  • 24
  • 24
  • 24
  • 23
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

EFFECT OF VOID VOLUME ON THE FRICTION AND RHEOLOGY OF CONCENTRATED SLURRIES.

Lezzar, Ahmed. January 1983 (has links)
No description available.
152

Monitoring cracks in a rotating shaft

Mohamed, Alhade Abdossllam January 2012 (has links)
Condition monitoring of rotating shafts is gaining importance in industry due to the need to increase machine reliability and decrease the possible loss of production due to machine breakdown. In this work, the use of vibration signals for the detection of a crack within a shaft was investigated. The research involved the measurement of vibration signals during laboratory tests on a long rotating shaft rig. The focus of the experimental work was on the effect of cracks on the dynamics and the initiation and growth of cracks in the shaft. Measurements were taken from the shaft system both with simulated cracks (notches) cut at 45° and 90° to the shaft axis and with real propagating cracks initiated by a pre-crack cut. All defects were located at the mid- point along the shaft. The vibration responses and stresses were measured for different depths of crack. The vibration responses of the three different defects were compared using PSDs of the data to identify the change in position and magnitude of the peaks in the spectrum under each defect. Experiments to study the effect of defect depth at different shaft rotation speeds were also carried out. Finally, a shaft with a breathing crack (continuously opening and closing as the shaft rotates) was also studied experimentally, with the crack growing under normal steady state operating conditions. After completing the experiment work, the shaft was broken and the type of fracture studied. The results for both simulated and actual crack growth showed that vibration frequencies decreased as a crack progressed, indicating the possibility of using the vibration signal for crack detection. A significant relationship was found between the stage of crack growth and the vibration results. A finite element (FE) model was constructed to explore the relationship between the natural frequencies and crack depth and position along the shaft and to explain and validate the results of the experimental work. The FE model showed similar trends to the experimental results and also allowed the effect of different crack positions to be explored. The PSD data was fed into an artificial neural network after a feature extraction procedure was applied to significantly reduce the quantity of data whilst at the same time retaining the salient information. Such an approach results in a considerably reduced training time for the network due to the reduced complexity. The proposed scheme was shown to successfully identify the different defect levels. This method greatly enhances the capacity of an automated diagnostic process by linking increased capability in signal analysis to the predictive capability of the artificial neural network.
153

Interactive simulation of multi-material deformable models. / CUHK electronic theses & dissertations collection

January 2007 (has links)
Based on the expression specifying the deformation of a multi-component object, a component-based condensation method is developed. This further reduces the size of the matrix to be inverted from the total number of unknown displacements to the number of unknown displacements with changing boundary condition. To speed up the construction of matrices, a maximal matrix technology is proposed. By categorizing the changes in boundary conditions, three fast update strategies on matrix inverse are introduced. Based on the maximal matrix technology and the matrix inverse update strategy, eight easily-formed characteristic matrices are defined to enhance the computation speed further. / In this thesis, an algorithm is developed for simulating the deformation of multiple objects with different material properties using the boundary element method. By tessellating the surface of a geometric model into elements, classifying all the element nodes into different groups with different attributes, and partitioning the stiffness matrix into several sub-matrices according to these attributes, a compact expression about the unknown variables is deduced. In this expression, the dimension of the system matrix has been effectively reduced compared with the traditional method. This expression shows that the deformation of a multi-component object can be simulated in a way similar to that of a single-component object. / Research on the real-time deformation of elastic models has captured wide attention and gained considerable achievement in the past two decades. Most related works focus on developing efficient ways to simulate the behavior of a single-component elastic object. However, objects are usually made up of multiple components with different material properties in practice. It is thus essential to develop efficient techniques for modeling objects which are composed of more than one material. / To make the proposed accelerated algorithm more applicable, a method for simulating the deformation of multi-component models with non-matching interfaces is developed. By applying the interpolation and extrapolation methods, the displacement data can be transferred between non-conforming interfaces. With the application of the energy conservation principle, a relationship between the internal forces on different surfaces can also be established. Together with the force equilibrium conditions and displacement compatibility conditions over the common faces of objects, the deformation of models composed of multi-material components with non-matching interfaces can be simulated. During the application of the linear interpolation method, when the mesh densities on the interfaces of the neighboring components are not the same, unexpected phenomena arise in the simulation process because of this disparity. A traction super-imposition method is adopted to enforce the force constraints on the interface. Experiments showed that this approach produces the correct results. / Zhou, Aifang. / "August 2007." / Adviser: Keh Chuen Hui. / Source: Dissertation Abstracts International, Volume: 69-02, Section: B, page: 1299. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2007. / Includes bibliographical references (p. 144-155). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract in English and Chinese. / School code: 1307.
154

Prediction of spring-back in thin sheet of aluminium alloy

Nguyen, Vu Thua, 1965- January 2003 (has links)
Abstract not available
155

Packing of particles during softening and melting process.

Zheng, Xiao-Qin, Materials Science & Engineering, Faculty of Science, UNSW January 2007 (has links)
Softening deformation of iron ore in the form of sinter, pellet, and lump ore in the cohesive zone of an ironmaking blast furnace is an important phenomenon that has a significant effect on gas permeability and consequently blast furnace production efficiency. The macroscopic softening deformation behavior of the bed and the microscopic deformation behavior of the individual particles in the packed bed are investigated in this study using wax balls to simulate the fused layer behavior of the cohesive zone. The effects of softening temperature, load pressure, and bed composition (mono - single melting particles, including pure or blend particles vs binary ??? two different melting point particles) on softening deformation are examined. The principal findings of this study are: 1. At low softening temperatures, an increase in load pressure increases the deformation rate almost linearly. 2. At higher softening temperatures, an increase in load pressure dramatically increases the deformation rate, and after a certain time there is no more significant change in deformation rate. 3. The bed deformation rate of a mono bed is much greater than that of a binary one. 4. In a binary system, the softening deformation rate increases almost proportionally with the increase in the amount of lower melting point wax balls. 5. In a mono system with blend particles, the content of the lower melting point material has a more significant effect on overall bed deformation than the higher melting point one. 6. The macro softening deformation of the bed behaves the theory of creep deformation. 7. A mathematical model for predicting bed porosity change due to softening deformation based on creep deformation theory has been developed. 8. Increase in load pressure also reduces the peak contact face number of the distribution curves, and this is more prominent with higher porosity values. 9. The contribution of contact face number to bed porosity reduction is more pronounced in a mono system than in a binary system. 10. The porosity reduction in a binary bed is more due to the contact face area increase, presumably of the lower melting point particles. 11. The mono system has a single peak contact face number distribution pattern while the binary system exhibits a bimodal distribution pattern once the higher melting point material starts to deform. 12. In a binary system, an increase in deformation condition severity tends to reduce the contact face number of the higher melting point material without having to increase the contact face number of the lower melting point material accordingly to achieve a given porosity.
156

Rebound predictions of mechanical collisions

Lai, Liang-Ju 02 February 1999 (has links)
Predictions of mechanical collisions between two bodies frequently cannot be completed by the impulse-momentum equation together with a complete description of the motion of the system at the initial contact. Additional account must be taken of the deformations and frictional interaction induced by the impulsive reaction force, where the bodies contact one another, as these play an important role in the outcome of the collision. During the time the bodies are in contact, elastic, friction and inertia properties combine to produce a complex variation of sliding and sticking through out the contact surface. For accurately predicting the impulse and velocity changes during contact, a considerably simplified, coupled, conservative model, which captures the essential characteristics of the elastic-friction interaction during contact loading, is investigated in this thesis. In this simplified model, the interface between two colliding bodies resembles the behavior of a pair of mutually perpendicular, non-linear springs which react independently with the exception that the stiffness of the tangential "spring" is influenced by the normal displacement. These elastic properties, in combination with inertial properties derived from generalized impulse-momentum laws, form a "spring-mass" system for which numerical integration yields the prediction of rebound velocities. For comparison, an explicit non-linear finite element code, DYNA3D, developed at Lawrence Livermore National Laboratory for analyzing the transient dynamic response of three-dimensional solids, is used to predict the responses of an elastic sphere and elastic rod, each colliding with a rigid plane with varying initial velocities and configurations. Results are also compared with results of a complex analysis of collisions of spheres by Maw, Barber, and Fawcett (1976). / Graduation date: 1999
157

Finite element stress analysis of the role of thermal expansion in small scale elastic crustal deformation

Davis, Robert L. 03 June 2011 (has links)
The finite element stress analysis method was utilized to determine the effects of thermal expansion in small scale crystal deformation with the entire study conducted within the elastic limits of failure. A 5 by 25 km model was simulated, with accepted physical properties of rock and heated to an average geothermal gradient 30° C/km. Parameters independently examined included 1) variance of the coefficient of thermal expansion; 2) variance of temperature magnitude; and 3) variance of temperature geometry.The variations in coefficient of thermal expansion, studied here produced slight alterations in stress patterns produced by body weight and the normal geothermal gradient. It was suggested that general ranges of coefficients were sufficient to predict the behavior of the body. Temperature magnitudes have also resulted in small changes in displacements and stress patterns.Displacements due to thermal expansion were of minimal geologic significance. However, the stress could alter stress patterns generated by other tectonic forces. This may dictate the time and location of the initial failure of the body; in turn controling any subsequent tectonic activity.Ball State UniversityMuncie, IN 47306
158

Geophysical inversion of far-field deformation for hydraulic fracture and reservoir information /

Du, Jing, January 2000 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2000. / Vita. Includes bibliographical references (leaves 140-146). Available also in a digital version from Dissertation Abstracts.
159

An analytical and numerical analysis of dynamic failure based on the multi-physics involved /

Xin, Xudong, January 2001 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2001. / Typescript. Vita. Includes bibliographical references (leaves 100-104). Also available on the Internet.
160

An analytical and numerical analysis of dynamic failure based on the multi-physics involved

Xin, Xudong, January 2001 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2001. / Typescript. Vita. Includes bibliographical references (leaves 100-104). Also available on the Internet.

Page generated in 0.1071 seconds