Spelling suggestions: "subject:"dehalogenation"" "subject:"rehalogenation""
31 |
Influência dos nutrientes nitrogênio e fósforo na degradação anaeróbia do pentaclorofenol e na diversidade microbiana dos sedimentos enriquecidos do Estuário de Santos-São Vicente, Estado de São Paulo / Influence of nitrogen and phosphorus nutrients on the anaerobic degradation of pentachlorophenol and on the natural microbial diversity of sediments from the Santos-São Vicente estuary, state of São Paulo, BrazilGunther Brucha 01 October 2007 (has links)
A pesquisa que ora se apresenta visou estabelecer as condições nutricionais adequadas para o uso do sedimento do estuário de Santos - São Vicente do Estado de São Paulo, como inóculo no reator anaeróbio horizontal de leito fixo (RAHLF) no processo de degradação anaeróbia do pentaclorofenol (PCP) em busca da aplicação da tecnologia em escala real, assim como identificar grupos microbianos envolvidos no processo. Para tanto, sedimento do estuário de Santos-São Vicente, com características metanogênicas foi utilizado. Os microrganismos provenientes do sedimento estuarino foram enriquecidos sob condições metanogênicas e halofílicas, visando a utilização do sedimento como inoculo nos ensaios nutricionais e na operação dos reatores do tipo RAHLF. O meio de cultivo salino Biota, suplementado com glicose e formiato, foi utilizado para o desenvolvimento da comunidade microbiana metanogênica halofílica. Testes de degradação do PCP foram realizados previamente sob diferentes concentrações de nitrogênio e fósforo, com vistas a uma melhor compreensão da relação N:P adequada para o processo anaeróbio. Os resultados provenientes do acompanhamento da diversidade microbiana do domínio Bacteria nas diferentes relações testadas indicaram a seleção de distintas comunidades microbianas, resultando em diferentes velocidades de degradação do PCP. A relação N:P de 10:1 foi a que apresentou melhores resultados, pois além da rápida degradação do PCP quando comparada com as outras relações, apresentou a maior diversidade de microrganismos. Posteriormente, o sistema RAHLF foi operado com vazão média afluente de aproximadamente 44 mL/hora, com meio mineral salino Biota (DQO:N:P de 1000:130:45) para R1 e com a alteração para relação DQO:N:P de 1000:10:1 para R2. Duas diferentes estratégias foram adotadas para partida dos reatores. Para R1, optou-se por acrescentar PCP na concentração inicial de 10,0 mg/L, durante 110 dias causando desestabilização da metanogênese e acúmulo de PCP, requerendo intervenção para recuperação do reator pelo período de 90 dias. Na partida do RAHLF 2, optou-se pelo aumento gradual de concentração do PCP de 0,5 mg/L a 12,0 mg/L durante 52 dias. Após estabelecimento da metanogêsenese, R1 foi alimentado durante 270 dias com 5,0 mg PCP/L, durante 41 dias com 8,0 mg/L e 59 dias com 12 mg/L. O balanço de massa no reator RAHLF 1 demonstrou que 0,52% do PCP adicionado saiu no efluente e que não ocorreu adsorção no sistema. 22,34 mg de 2,4,6 TCP, intermediário da degradação do PCP, ficaram adsorvidos na biopartícula. Os resultados das análises de diversidade microbiana apontaram para mudança da comunidade microbiana do domínio Bacteria ao longo do período operacional e morfologias de bacilos fluorescentes semelhantes a Methanobacterium sp estiveram presentes no reator. No RAHLF 2, a degradação do PCP foi de 100%, até a concentração de 10,0 mg/L. No final da fase com 12,0 mg PCP/L, a concentração no efluente foi de 1,4 mg PCP/L, com eficiência média de remoção de 93,2 \'+ ou -\' 5,5%. 2,4,6 TCP foi o intermediário principal no efluente do reator. 4,06% do PCP adicionado ao sistema foram encontradas no efluente e 15,94% ficaram adsorvidas nas biopartículas do reator. Portanto, considera-se que 80% do PCP adicionado sofreu degradação anaeróbia microbiana. A presença dos microrganismos Methanocalcullus e Methanosaeta na fase final de operação do RAHLF 2 e determinadas no sedimento coletado foi considerada fundamental para manter estabilidade do reator. Essa descoberta contribui com informações sobre a real diversidade microbiana de ecossistemas tropicais, sobretudo em habitats anaeróbios, bem como sobre as condições nutricionais e os procedimentos necessários para confiná-la em reatores e usá-la em processos de biorremediação. / The research presented here aimed to determine the optimal nutritional conditions for the use of sediment from the Santos-São Vicente estuary in the state of São Paulo, Brazil, as an inoculum for a horizontal-flow anaerobic immobilized biomass reactor (HAIB) applied to the anaerobic degradation of pentachlorophenol (PCP), seeking to apply the technology on the real scale and to identify the microbial groups involved in the process. To this end, sediment with methanogenic characteristics from the Santos-São Vicente estuary was used. The microorganisms from the estuarine sediment were enriched under methanogenic and halophilic conditions, aiming to use the sediment as an inoculum in nutritional assays and in the operation of HAIB reactors. Biota saline culture medium supplemented with glucose and formiate was used to develop the halophilic methanogenic microbial community. PCP degradation tests were carried out previously under different concentrations of nitrogen and phosphorus in order to gain a better understanding of the optimal N:P ratio for the anaerobic process. The findings on the microbial diversity of the domain Bacteria at the various ratios tested here indicated the selection of distinct microbial communities, resulting in different PCP degradation velocities. The N:P ratio utilized was 10:1 since it presented the best results not only in terms of faster PCP degradation than the other ratios but also highest diversity of microorganisms. The HAIB reactor was then operated with a mean inflow of approximately 44 mL/hour, using the biota saline mineral medium with a COD:N:P ratio of 1000:130:45 in R1 (reactor 1) and a COD:N:P ratio of 1000:10:1 in R2. Two distinct strategies were adopted to start up the reactors. In R1 PCP was added at an initial concentration of 10.0 mg/L for 100 days, causing destabilization of the methanogenesis and accumulation of PCP, requiring a 90-day intervention for the reactor\'s recovery. To start up R2, the PCP concentration was increased gradually from 0.5 mg/L to 12.0 mg/L for 52 days. After methanogenesis was established, R1 was fed for 270 days with 5.0 mg of PCP/L, followed by 41 days with 8.0 mg/L and 59 days with 12 mg/L. The mass balance in R1 indicated that 0.52% of the added PCP exited through the reactor\'s outflow and that adsorption of the system did not occur. 22.34 mg of 2,4,6 TCP, an intermediary of PCP degradation, was adsorbed in the bioparticles. The results of the analysis of microbial diversity indicated a change in the microbial community of the domain Bacteria along the operational period, with fluorescent bacilli morphologies resembling Methanobacterium sp present in the reactor. PCP degradation in R2 was 100% up to a concentration of 10.0 mg/L. At the end of the phase with 12.0 mg PCP/L, the effluent concentration was 1.4 mg PCP/L, with a mean removal efficiency of 93.2 \'+ or -\' 5,5%. 2,4,6 TCP was the main intermediary in the reactor\'s effluent. 4.06% of the PCP added to the system was found in the effluent and 15.94% was absorbed in the bioparticles of the reactor. Therefore, it was concluded that 80% of the added PCP underwent microbial anaerobic degradation. The presence of Methanocalcullus and Methanosaeta microorganisms in the final operating phase of R2, which was determined in the collected sediment, was considered fundamental for maintaining the reactor\'s stability. This discovery contributes to the body of information about the real microbial diversity of tropical ecosystems, above all in anaerobic habitats, and about the nutritional conditions and procedures involved in confining these microorganisms in reactors and using them in bioremediation processes.
|
32 |
MECHANISTIC STUDIES ON THE PHOTOTOXICITY OF ROSUVASTATIN, ITRACONAZOLE AND IMATINIBNardi, Giacomo 31 March 2015 (has links)
Photosensitizing effects of xenobiotics are of increasing concern in public health
since modern lifestyle often associates sunlight exposure with the presence of chemical
substances in the skin. An important number of chemicals like perfumes, sunscreen
components, or therapeutic agents have been reported as photosensitizers.
In this context, a considerable effort has been made to design a model system for
photosafety assessment. Indeed, screening for phototoxicity is necessary at the
early phase of drug discovery process, even before introducing drugs and chemicals
into clinical therapy, to prevent undesired photoreactions in humans. In the case
of new pharmaceuticals, their phototoxic potential has to be tested when they absorb
in the regions corresponding to the solar spectrum, that is, for wavelengths
>290 nm. So, there is an obvious need for a screening strategy based on in vitro
experiments. The goal of the present thesis was the photochemical study of different
photoactive drugs to investigate the key molecular aspects responsible for their
photosensitivity side effects.
In a first stage, rosuvastatin was considered in chapter 3 as representative
compound of the statin family. This lipid-lowering drug, also known as “superstatin”,
contains a 2-vinylbiphenyl-like moiety and has been previously described
to decompose under solar irradiation, yielding stable dihydrophenanthrene analogues.
During photophysical characterization of rosuvastatin, only a long-lived
transient at ca. 550 nm was observed and assigned to the primary photocyclization
intermediate. Thus, the absence of detectable triplet-triplet absorption and
the low yield of fluorescence ruled out the role of the parent drug as an efficient
sensitizer. In this context, the attention was placed on the rosuvastatin main photoproduct
(ppRSV). Indeed, the photobehavior of this dihydrophenanthrene-like
compound presented the essential components needed for an efficient biomolecule
photosensitizer i.e. (i) a high intersystem crossing quantum yield (ΦISC =0.8), (ii)
a triplet excited state energy of ca. 67 kcal mol−1
, and (iii) a quantum yield of singlet oxygen formation (Φ∆) of 0.3. Furthermore, laser flash photolysis studies
revealed a triplet-triplet energy transfer from the triplet excited state of ppRSV
to thymidine, leading to the formation of cyclobutane thymidine dimers, an important
type of DNA lesion. Finally, tryptophan was used as a probe to investigate the
Type I and/or Type II character of ppRSV-mediated oxidation. In this way, both
an electron transfer process giving rise to the tryptophanyl radical and a singlet
oxygen mediated oxidation were observed. On the basis of the obtained results,
rosuvastatin, through its major photoproduct ppRSV, should be considered as a
potential sensitizer.
Then, itraconazole (ITZ), a broad-spectrum antifungal agent, was chosen as
main character of chapter 4. Its photochemical properties were investigated in connection
with its reported skin photosensitivity disorders. Steady state photolysis,
fluorescence and phosphorescence experiments were performed to understand ITZ
photoreactivity in biological media. The drug is unstable under UVB irradiation,
suffering a primary dehalogenation of the 2,4-dichlorophenyl moiety that occurs
mainly at the ortho-position. In poorly H-donating solvents, as acetonitrile, the
major photoproduct arises from intramolecular attack of the initially generated
aryl radical to the triazole ring. In addition, reduced compounds resulting from
homolytic cleavage of the C-Cl bond in ortho or para positions and subsequent Habstraction
from the medium are obtained to a lesser extent. In good H-donating
solvents, such as ethanol, the main photoproducts are formed by reductive dehalogenation.
Furthermore, irradiation of a model dyad containing a tryptophan unit
and the reactive 2,4-dichlorophenyl moiety of itraconazole leads to formation of
a new covalent link between these two substructures revealing that homolysis of
the C-Cl bond of ITZ can result in alkylation of reactive amino acid residues of
proteins, leading to formation of covalent photoadducts. Therefore, it has been established
that the key process in the photosensitization by itraconazole is cleavage
of the carbon-halogen bond, which leads to aryl radicals and chlorine atoms. These
highly reactive species might be responsible for extensive free radical-mediated biological
damage, including lipid peroxidation or photobinding to proteins.
In chapter 5, photobehavior of imatinib (IMT) was addressed. This is a
promising tyrosine kinase inhibitor used in the treatment of some types of human
cancer, which constitutes a successful example of rational drug design based on the
optimization of the chemical structure to reach an improved pharmacological activity.
Cutaneous reactions, such as increased photosensitivity or pseudoporphyria,
are among the most common nonhematological IMT side effects; however, the
molecular bases of these clinical observations have not been unveiled yet. Thus,
to gain insight into the IMT photosensitizing properties, its photobehavior was
studied together with that of its potentially photoactive anilino-pyrimidine and
pyridyl-pyrimidine fragments. In this context, steady-state and time resolved fluorescence,
as well as laser flash photolysis experiments were run, and the DNA
photosensitization potential was investigated by means of single strand breaks
detection using agarose gel electrophoresis. The obtained results revealed that the drug itself and its anilino-pyrimidine fragment are not DNA-photosensitizers.
By contrast, the pyridyl-pyrimidine substructure displayed a marked photogenotoxic
potential, which was associated with the generation of a long-lived triplet
excited state. Interestingly, this reactive species was efficiently quenched by benzanilide,
another molecular fragment of IMT. Clearly, integration of the photoactive
pyridyl-pyrimidine moiety in a more complex structure strongly modifies its
photobehavior, which in this case is fortunate as it leads to an improved toxicological
profile. Thus, on the bases of the experimental results, direct in vivo
photosensitization by IMT seems unlikely. Instead, the reported photosensitivity
disorders could be related to indirect processes, such as the previously suggested
impairment of melanogenesis or the accumulation of endogenous porphyrins.
Finally, a possible source of errors in the TEMPO/EPR method for singlet
oxygen detection was analyzed. For many biological and biomedical studies, it is essential
to detect the production of 1O2 and to quantify its production yield. Among
the available methods, detection of the characteristic 1270 nm phosphorescence of
singlet oxygen by time-resolved near infrared (TRNIR) emission constitutes the
most direct and unambiguous approach. An alternative indirect method is electron
paramagnetic resonance (EPR) in combination with trapping. This is based on
the detection of the TEMPO free radical formed after oxidation of TEMP (2,2,6,6-
tetramethylpiperidine) by singlet oxygen. Although the TEMPO/EPR method has
been largely employed, it can produce misleading data. This was demonstrated by
the present study, where the quantum yields of singlet oxygen formation obtained
by TRNIR emission and by the TEMPO/EPR method were compared for a set of
well-known photosensitizers. The results revealed that the TEMPO/EPR method
leads to significant overestimation of singlet oxygen yield when the singlet or triplet
excited state of the photosensitizers were efficiently quenched by TEMP, acting as
electron donor. In such case, generation of the TEMP+•
radical cation, followed by
deprotonation and reaction with molecular oxygen gives rise to a EPR detectable
TEMPO signal that is not associated with singlet oxygen production. This knowledge
is essential for an appropriate and error-free application of the TEMPO/EPR
method in chemical, biological and medical studies. / Nardi, G. (2014). MECHANISTIC STUDIES ON THE PHOTOTOXICITY OF ROSUVASTATIN, ITRACONAZOLE AND IMATINIB [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/48535
|
Page generated in 0.1074 seconds