• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Establishing a Tephrochronologic Framework for the Middle Permian (Guadalupian) Type Area and Adjacent Portions of the Delaware Basin and Northwestern Shelf, West Texas and Southeastern New Mexico, USA

Nicklen, Brian L. 11 October 2011 (has links)
No description available.
2

Sensitivity of seismic response to variations in the Woodford Shale, Delaware Basin, West Texas

Shan, Na 15 February 2011 (has links)
The Woodford Shale is an important unconventional oil and gas resource. It can act as a source rock, seal and reservoir, and may have significant elastic anisotropy, which would greatly affect seismic response. Understanding how anisotropy may affect the seismic response of the Woodford Shale is important in processing and interpreting surface reflection seismic data. The objective of this study is to identify the differences between isotropic and anisotropic seismic responses in the Woodford Shale, and to understand how these anisotropy parameters and physical properties influence the resultant synthetic seismograms. I divide the Woodford Shale into three different units based on the data from the Pioneer Reliance Triple Crown #1 (RTC #1) borehole, which includes density, gamma ray, resistivity, sonic, dipole sonic logs, part of imaging (FMI) logs, elemental capture spectroscopy (ECS) and X-ray diffraction (XRD) data from core samples. Different elastic parameters based on the well log data are used as input models to generate synthetic seismograms. I use a vertical impulsive source, which generates P-P, P-SV and SV-SV waves, and three component receivers for synthetic modeling. Sensitivity study is performed by assuming different anisotropic scenarios in the Woodford Shale, including vertical transverse isotropy (VTI), horizontal transverse isotropy (HTI) and orthorhombic anisotropy. Through the simulation, I demonstrate that there are notable differences in the seismic response between isotropic and anisotropic models. Three different types of elastic waves, i.e., P-P, P-SV and SV-SV waves respond differently to anisotropy parameter changes. Results suggest that multicomponent data might be useful in analyzing the anisotropy for the surface seismic data. Results also indicate the sensitivity offset range might be helpful in determining the location for prestack seismic amplitude analysis. All these findings demonstrate the potentially useful sensitivity parameters to the seismic data. The paucity of data resources limits the evaluation of the anisotropy in the Woodford. However, the seismic modeling with different type of anisotropy assumptions leads to understand what type of anisotropy and how this anisotropy affects the change of seismic data. / text
3

Secondary porosity and hydrocarbon production from the Ordovician Ellenburger Group of the Delaware and Val Verde basins, West Texas

Ijirigho, Bruce Tajinere January 1981 (has links)
No description available.
4

Quantified facies distribution and sequence geometry of the Yates Formation, Slaughter Canyon, New Mexico

Harman, Charles Averill 14 November 2011 (has links)
This study uses a new integrated outcrop data and airborne lidar from Slaughter Canyon, New Mexico, to quantitatively characterize the cycle-scale facies architecture within the G23-G26 high frequency sequences of the Yates Formation. High frequency cycle-scale mapping of these sequences shows sedimentological evidence for accommodation reduction associated with the Permain composite sequence (CS) 13 highstand (G23-G25). Development of the G26 HFS additionally demonstrates the isochronous balance of mixed carbonate-siliciclastic deposition across the Yates-Capitan reef-rimmed shelf during the initial CS-scale transgression following significant exposure and bypass of sand across the shelf. This sequence framework is quantitatively analyzed using progradation to aggradation (P/A) ratios, facies proportions, facies tract dip width, and facies tract bedding angles to evaluate the interplay of eustacy and syndepositional deformation as drivers of stratigraphic architecture. The sequences defined here developed in response to both eustacy and syndepositional deformation, but individual facies distributions and cycle stacking patterns were largely controlled by eustacy; while facies, cycle, and sequence thicknesses as well as facies bedding angles were locally influenced by syndepositional faulting. A reconstruction of each high frequency sequence and stepwise documentation of post-depositional fault displacement and HFS basinward rotation was generated using the lidar data. This analysis shows that the G23-G26 HFS developed basinward-dipping depositional topography from the shelf crest to the shelf margin reef. This geometry was largely unaltered by syndepositional faults during individual HFS deposition, but was rotated basinward shortly thereafter by younger fault movement. The accommodation trends recorded in this largely shelf crest to shelf margin window can be additionally projected into the middle shelf producing zones of the prolific Yates-aged reservoirs on the Northwest Shelf and Central Basin Platform. / text

Page generated in 0.0393 seconds