• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Incorporating the effect of delay variability in path based delay testing

Tayade, Rajeshwary G. 19 October 2009 (has links)
Delay variability poses a formidable challenge in both design and test of nanometer circuits. While process parameter variability is increasing with technology scaling, as circuits are becoming more complex, the dynamic or vector dependent variability is also increasing steadily. In this research, we develop solutions to incorporate the effect of delay variability in delay testing. We focus on two different applications of delay testing. In the first case, delay testing is used for testing the timing performance of a circuit using path based fault models. We show that if dynamic delay variability is not accounted for during the path selection phase, then it can result in targeting a wrong set of paths for test. We have developed efficient techniques to model the effect of two different dynamic effects namely multiple-input switching noise and coupling noise. The basic strategy to incorporate the effect of dynamic delay variability is to estimate the maximum vector delay of a path without being too pessimistic. In the second case, the objective was to increase the defect coverage of reliability defects in the presence of process variations. Such defects cause very small delay changes and hence can easily escape regular tests. We develop a circuit that facilitates accurate control over the capture edge and thus enable faster than at-speed testing. We further develop an efficient path selection algorithm that can select a path that detects the smallest detectable defect at any node in the presence of process variations. / text
2

Random Local Delay Variability : On-chip Measurement And Modeling

Das, Bishnu Prasad 06 1900 (has links)
This thesis focuses on random local delay variability measurement and its modeling. It explains a circuit technique to measure the individual logic gate delay in silicon to study within-die variation. It also suggests a Process, Voltage and Temperature (PVT)-aware gate delay model for voltage and temperature scalable linear Statistical Static Timing Analysis (SSTA). Technology scaling allows packing billions of transistors inside a single chip. However, it is difficult to fabricate very small transistor with deterministic characteristic which leads to variations. Transistor level random local variations are growing rapidly in each technology generation. However, there is requirement of quantification of variation in silicon. We propose an all-digital circuit technique to measure the on-chip delay of an individual logic gate (both inverting and non-inverting) in its unmodified form based on a reconfigurable ring oscillator structure. A test chip is fabricated in 65nm technology node to show the feasibility of the technique. Delay measurements of different nominally identical inverters in close physical proximity show variations of up to 28% indicating the large impact of local variations. The huge random delay variation in silicon motivates the inclusion of random local process parameters in delay model. In today’s low power design with multiple supply domain leads to non-uniform supply profile. The switching activity across the chip is not uniform which leads to variation of temperature. Accurate timing prediction motivates the necessity of Process, Voltage and Temperature (PVT) aware delay model. We use neural networks, which are well known for their ability to approximate any arbitrary continuous function. We show how the model can be used to derive sensitivities required for voltage and temperature scalable linear SSTA for an arbitrary voltage and temperature point. Using the voltage and temperature scalable linear SSTA on ISCAS 85 benchmark shows promising results with average error in mean delay is less than 1.08% and average error in standard deviation is less than 2.65% and errors in predicting the 99% and 1% probability point are 1.31% and 1% respectively with respect to SPICE.

Page generated in 0.0654 seconds