• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 297
  • 42
  • 16
  • 10
  • 7
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 459
  • 459
  • 419
  • 57
  • 57
  • 56
  • 39
  • 33
  • 32
  • 32
  • 31
  • 28
  • 28
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Sistemas de liberação controlada de óxido nítrico baseados em ditiocarbamatos /

Silva, Rondes Ferreira da. January 2009 (has links)
Orientador: Carlos Frederico de Oliveira Graeff / Banca: Wendel Andrade Alves / Banca: Francisco Carlos Lavarda / O Programa de Pós-Graduação em Ciência e Tecnologia de Materiais, PosMat, tem carater institucional e integra as atividades de pesquisa em materiais de diversos campi da Unesp / Resumo: O óxido nítrico (NO) é um radical livre com inúmeras funções fisiológicas, tais como regulação da pressão sanguínea e sistema nervoso. O desenvolvimento de Sistemas de Liberação Controlada (SLC) de NO no organismo são de grande importância em tratamentos de diversas patologias, bem como para a indústria farmacêutica. A espectroscopia de ressonância paramagnética (RPE) foi utilizada para detecção e caracterização da taxa de liberação de NO. Esta é uma técnica amplamente utilizada no estudo de entes paramagnéticos existentes em sistemas biológicos. Os SLCs de NO foram desenvolvidos a partir da incorporação do agente aprisionador de NO, FeDETC, nas matrizes biocompatíveis de látex e siloxanopoli(oxipropileno) (PPO). O foco deste trabalho é obter membranas para liberação controlada de NO que sejam capazes de liberar NO localmente através de estímulos externos. A matriz de PPO apresentou forte sinal de NO, resistência mecânica e estabilidade igual às melhores matrizes sólidas já obtidas em nosso laboratório. Mantendo a matriz de PPO em ambiente sem iluminação e à temperatura ambiente, o NO permanece aprisionado ao FeDETC por até 45 dias nas primeiras sínteses e 33 dias nas últimas sínteses. Em experimentos feitos com a matriz de látex foi observado que o NO permanece complexado ao FeDETC até 61 dias e 45 dias para amostras estocadas no escuro à temperatura ambiente e sob temperatura de 50C. Em ambas matrizes, foi observado que a taxa de liberação de NO do sistema pode também ser acelerada através da aplicação de um campo magnético ou através do aumento de temperatura. Estas características fazem do PPO e látex , matrizes ideais para construção de SLCs de NO. / Abstract: Nitric oxide (NO) is a free radical species with multiples physiological functions, such as the regulation of blood pressure and nervous system. The development of drug delivery systems (DDS) of NO in the body are of great importante in the treatment of varios diseases, as well as for the pharmaceutical industry. Electron Paramagnetic Resonance (EPR) technique, was used for NO detection and characterization of the NO delivery kinetics. This is a technique widely used in the study of paramagnetic entities existing in biological systems. NO DDSs were developed based in trap FeDETC incorporated in siloxane-poly(oxypropylene) (PPO) and latex biocompatible matrix. The focus of this work is to obtain membranes for controlled release of NO that are able to release NO locally by external stimuli. The PPO400 and PPO2000 DDS presents a stronger EPR signal, strength and highest stability, equal to the best solid matrices already obtained in our laboratory, e. g. latex matrix. Keeping the matrix in PPO enviromment without lighting and temperature, the NO remains trapped in FeDETC for up to 45 days in the first synthesis and summaries for the last 33 days. In experiments made with the latex matrix was observed that NO remains trapped in FeDETC until 61 or 45 days for samples stored in the dark at room temperature and samples left at the greenhouse 50C. In both matrices was observed that the kinetics of NO release of NO release of the system can also be accelerated by applying modulated magnetic field of 40G or by increasing temperature. These characteristics make the PPO and latex, matrices ideal for building DDS NO. / Mestre
132

Comparing the Absorption of Different Hormone Delivery Systems: A Meta-Analysis

Araya, Tanya, Coates, Katie January 2006 (has links)
Class of 2006 Abstract / Objectives: To create a conversion chart of non-oral estrogen replacement systems based on Cavg. Design: Meta-analysis. Methods: A literature search using two databases, drug manufacturer data, and the online FDA new drug application website was performed in May 2005. Of the original studies identified, those that were selected for analysis met the following inclusion criteria: 1) English in language 2) only included human subjects 3) reported the average blood concentration (Cavg) and 4) were not baseline adjusted. The Cavg data was entered into a spreadsheet and analyzed by an independent statistician. Results: Fifty studies were originally identified. Of these 50 studies, only 22 met inclusion criteria and were used to calculate the mean Cavg of different administration systems. The Cavgs were then used to create a comparison chart. Conclusions: Overall, there has been little research done that examines blood estradiol levels achieved through non-oral administration routes. The chart created from this meta-analysis is vital to health care providers because it allows a patient to be converted from one route to another while assuring the provider that the patient is receiving the same therapeutic benefit.
133

Delivery system design in American retail banks: an empirical study

Huete, Luis M. January 1988 (has links)
Thesis (D.B.A.)--Boston University / PLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at open-help@bu.edu. Thank you. / This dissertation explores the design of delivery systems in a national probability sample of American retail banks. For the purposes of this study, the delivery system is defined as the aggregate of delivery channels through which a retail bank delivers its services. / 2031-01-01
134

Preparation and characterization of noble metal-magnetite hybrid nano/micro composites towards drug delivery and heterogeneous catalysis

Li, Wai Chung 22 June 2019 (has links)
This thesis describes the preparation and characterization of core-shell noble metal-magnetite hybrid hollow nanocomposites utilizing hierarchical architecture. The hollow magnetite (hFe3O4) nanoparticles were prepared by hydrothermal method, forming the cavity via Oswald ripening. Further surface modifications involved both inorganic and organic coatings, conferring the intracellular drug delivery ability and the catalytic enhancement. In the first part, a series of hierarchical core-shell nanostructures flower-like hFe3O4@AlOOH was synthesized through solvothermal method and sol-gel process. The formation of cavity accessible hFe3O4@γ-AlOOH was achieved using silica-templated solvothermal treatment where the Kirkendall effect was observed. The morphologies of the as-prepared nanocomposites were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA) and Fourier-transform infrared spectroscopy (FTIR). Then, the nano-encapsulation of platinum drug using hollow magnetite and its derivatives, has been developed with improved loading efficiency via co-solvent system. A dimethylformamide/water co-solvent system was found to be the most efficient system to encapsulate water-insoluble cisplatin. The platinum content was further quantitatively and qualitatively analyzed by inductively coupled plasma mass spectrometry (ICP-MS) and FTIR spectroscopy. The enhancement of loading efficiency could be driven by emulsification due to the diffusion of hydrophobic cisplatin into the hollow cavity of iron oxide nanoparticles. By incorporating water, the loading efficiency of hFe3O4 and hFe3O4@γ-AlOOH increased from 1-2% to 27% and from 6% to 54%, respectively. The grafting of cisplatin on AlOOH nanoflakes might account for the high loading efficiency of flower-like hFe3O4@AlOOH. As a complement to naked hFe3O4, a cell-penetrating poly(disulfide)s (CPD)-decorated hollow iron oxide nanoparticle was synthesized by immobilizing both cysteine and MPTMS as an initiator, followed by in situ polymerization to form hFe3O4-Cys-CPD-CONH2 and hFe3O4-MPS-CPD-CONH2. The morphologies were characterized by TEM/energy-dispersive X-ray spectroscopy (TEM/EDX) and the compositions of the as-prepared iron oxide nanocomposites were characterized by TGA, FTIR and X-ray photoelectron spectroscopy (XPS) and ICP-MS. The CPD coating not only serve as a protective layer, but also prevent the encapsulated cisplatin from a premature release. The hFe3O4-MPS-CPD-CONH2 exhibit promising features for the intracellular delivery of cisplatin, demonstrating a glutathione (GSH)-responsive drug release. Comparing with other hFe3O4 nanoparticles, an enhancement of cellular uptake of hFe3O4-MPS-CPD-CONH2 could be observed by optical microscope, showing rapid accumulation of the hFe3O4-MPS-CPD-CONH2 nanocomposites in the primary human renal proximal tubular epithelial cells (HRPTEpiCs) cell in 2 h. At 24 h, hFe3O4 (F), hFe3O4-MPS (FS) and hFe3O4-MPS-CPD-CONH2 (FSC) together with cisplatin treatment did not cause any significant cytotoxicity to the cells when the particle concentration is less than 10 µg/mL. Interestingly, FSCC showed a certain extent of toxicity with increasing Fe and Pt concentration along with the treated time. It may suggest that the hFe3O4-MPS-CPD-CONH2 nanoparticle, as a cisplatin carrier, could enhance the drug efficiency by increasing cellular uptake of the nanoparticles in HRPTEpiCs together with the boosted cytotoxicity. Based on these data, cisplatin- hFe3O4-MPS-CPD-CONH2 (FSCC) treatments with the concentration less than 20 µg/mL and duration no more than 24 h could maintain around 70% of the cell viability of the HRPTEpiCs. The hypothesis, at which CPD serves as an efficient carrier for intracellular cisplatin delivery, could be confirmed by both microscopic images and the cell viability test. In the second part, a series of Au/Fe3O4 hybrid nanocomposites was prepared to investigate their catalytic efficiencies using 4-nitrophenol reduction as a model system. The flower-like hFe3O4@γ-AlOOH@SiO2-NH2@Au was prepared by using protonated ammonium on hFe3O4@γ-AlOOH@SiO2-NH2 to entangle gold nanoparticles (AuNPs) via electrostatic attraction. In comparison to numerous of catalytic studies, the turnover frequency (TOF) of hFe3O4@γ-AlOOH@SiO2-NH2@Au shows a superior conversion rate up to 7.57 min-1 (4-nitrophenol per Au per min) for the 4-nitrophenol using sodium borohydride as a reductant. A rapid conversion of 4-nitrohpenol was observed using flower like composites that converted the 4-nitrophenol within 2 min. Our result suggests that silica residue hinders the reduction rate of the 4-nitrophenol. A significant deviation from pseudo first order was observed for densely AuNPs-functionalized nanoflower system, hFe3O4@γ-AlOOH@SiO2-NH2@Au2X, which is different from most of the 4-nitrophenol reductions reported in literature. The hFe3O4@γ-AlOOH@SiO2-NH2@Au also demonstrates catalytic activity when heated up to 800 °C before reduction. The recyclability was examined using magnetically recycled hFe3O4@γ-AlOOH@SiO2-NH2@Au, which showed insignificant decrease in the catalytic efficiency. To prove the concept, platinum nanoparticles (PtNPs) immobilized hFe3O4@γ-AlOOH@SiO2-NH2@Pt and hFe3O4@γ-AlOOH@SiO2-NH2@Pt/Au were also prepared via electrostatic attraction to verify the feasibility of endowing modular functionality via post modification.
135

The Perceived Impact of WebCT Technology as an Instructional Delivery System among College Instructors

McClinton, Jeton 05 May 2007 (has links)
This descriptive study was designed to assess college instructors? perceptions of the usefulness of WebCT features designed to enhance course management and instruction. Also assessed were college instructors? perceptions of instructional incentives and instructional challenges encountered when using WebCT as an instructional delivery system and their perceptions of the quality of WebCT training and institutional support. A web-based survey questionnaire was sent to 181 college instructors at two southern universities who used WebCT for instructional delivery. The data were analyzed using descriptive statistics including means, standard deviations, and one-way analyses of variance (ANOVAs). All significant analyses of variance were followed by Tukey?s post hoc procedure. The findings revealed that the majority of respondents had positive perceptions of WebCT features designed to enhance course management and instruction. In addition, respondents showed positive perceptions of the instructional incentives listed on the survey questionnaire. On the other hand, the majority of respondents showed ambivalent perceptions of the quality of WebCT training, quality of institutional support and instructional challenges encountered as a result of using WebCT. Also, the analysis of data identified significant differences in respondents perceptions based on age, faculty rank and years of teaching experience.
136

Formulation of polymer-stabilized doxorubicin nanoparticles by flash nanoprecipitation for improved uptake into cancer cells.

January 2013 (has links)
ABC運輸蛋白的過度表達是多重抗藥性(MDR)的重要機制之一,癌細胞會同時對結構上無關的抗癌藥物產生抗藥性。避免癌細胞的多重抗藥性有不同方法,其中用聚合物納米載體來攜帶易受多重抗藥性影響的抗癌藥物近年來獲得了很大的關注。本研究的目標在使用一個相對新穎的納米開發技術,被稱為瞬時納米沉澱(FNP),去開發一種運載著易受多重抗藥性影響的抗癌藥物的聚合物納米粒子系統。為此,我們使用專門設計的四流多進旋渦混合器(MIVM),把阿黴素(DOX),一種屬於蒽環類的抗癌藥物,亦同時作為P糖蛋白(P-gp)底物的藥物,包進在二嵌段共聚物內。 / 目的:本研究的目的是:(一)通過MIVM,利用瞬時納米沉澱去配製運載DOX的聚合物納米粒子;(二)辨别和優化納米粒子的大小,物理性能和運載DOX聚合物納米粒子的體外釋放速率;(三)檢查納米粒子的表面元素和化學組成;(四)評估優化納米粒子在抗藥性癌症細胞模型的抗腫瘤能力和抵抗多重抗藥性的能力。 / 方法:不同藥物(DOX)對聚合物比例的瞬時納米沉澱是通過在四流MIVM中混合溶在有機溶液二甲基甲酰胺(DMF)或二甲基酮(ACT)的鹽酸阿黴素(DOX.HC1)或阿黴素游離鹼(DOX.FB)和兩親性二嵌段共聚物[聚乙二醇-聚乳酸;分子量2000-10000]和反抗溶劑(含有氫氧化鈉為DOX.HCl或純淨水DOX+FB)來製備的。納米混懸劑的平均粒徑和粒度分佈會通過動態光散射粒度分析法去檢測,表面電荷會通過界達電位測量去檢測。阿黴素的包封率和載藥量會用紫外/可見光譜儀在波長為480 nm時測定。粒子形態將會用原子力顯微鏡(AFM)來去檢測,粒子表面的組合物將會用X-射線光電子能譜(XPS)來去檢測DOX聚合物納米粒子在不同pH值的的體外釋放會通過紫外/可見光譜儀去檢測。DOX聚合物納米粒子的體外細胞毒性會利用橫若丹明B比色法檢定,藥物積累和反轉運會利用流式細胞儀分析來測定。 / 結果:在適當優化鹽酸阿黴素(DOX.HC1)或阿黴素游離鹼(DOX.FB)的聚合物的比例後,我們成功製備了平均粒徑小於100 nm的DOX聚合物納米粒子(DOX.NP)與使用在有機溶液中DOX.HC1和水相的氫氧化鈉中和法相比,通過在有機溶液中的DOX.FB和純水作為反溶劑來製備的DOX.NP表現出類似的平均粒子大小(小於100 nm),但顯示出更高的藥物包封率(48 %, 而不是中和法的25 %)。用DOX.FB製備的DOX.NP的載藥量可達14 %DOX.NP表現出pH依賴性的藥物釋放曲線,和在酸性pH值時更强的累積釋放率。X-射線光電子能譜顯示沒有阿黴素出現在納米粒子的表面上P-gp過度表達的LCC6抗藥性乳腺癌细胞的細胞毒性作用顯示了 DOX.NP和DOX.HC1在缓衝溶液中的差異並不顯著。相對DOX.HC1,流式細胞儀分析確定了 DOX.NP明顯增加了細胞攝取DOX的能力。此外,在外排後,DOX.NP在細胞內DOX的濃度顯示出了更長的保留時間。 / 結論:一種通過在多進旋過混合器(MIVM)進行反溶劑沉澱,用於配製具有可控的粒子大小運載DOX的聚合物納米粒子的快速,方便,和可重複性的方法已經被開發。配製的納米粒子顯示出pH值依賴性持續的藥物釋放曲線和更強的癌細胞攝取DOX能力。 / Over-expression of ATP-binding cassette (ABC) is one of the most important mechanisms responsible for multidrug resistance (MDR), in which tumor cells exhibit simultaneous resistance to structurally unrelated anticancer drugs. Various approaches have been attempted to circumvent MDR in cancer cells, among which polymeric nanocarrier for delivery of MDR-sensitive anticancer drugs has received considerable attention in recent years. The present project was aimed at developing a polymeric nanoparticle system using a relatively novel nanoparticle technology termed flash nanoprecipitation (FNP) for delivery of MDR-susceptible chemotherapeutic agents. To this end, doxorubicin (DOX), an anthracycline anticancer agent and a P-gp substrate, was incorporated into an amphiphilic diblock copolymer using a specially designed four-stream multi-inlet vortex mixer (MIVM). / PURPOSES: The objectives of the present study are: (a) to formulate DOX-loaded polymeric nanoparticles by FNP using an MIVM; (b) to characterize and optimize the particle size, physical properties and in vitro DOX release rate of the formulated nanoparticles; (c) to examine the surface elemental and chemical compositions of the formulated nanoparticles; (d) to evaluate the anti-tumor activity of the optimized nanoparticles and their ability to combat MDR in resistant cancer cell line models. / METHODS: FNP of DOX was effected in a four-stream MIVM by mixing organic solutions of doxorubicin hydrochloride (DOX.HCl) or doxorubicin free base (DOX.FB) and an amphiphilic diblock copolymer [polyethylene glycol-polylactic acid (PEG-PLA); MW2k-10 ki]n dimethylformamide (DMF) or acetone (ACT) at different drug-to-polymer ratios with an antisolvent (water containing sodium hydroxide for DOX.HCl or pure water for DOX.FB). The resulting nanosuspensions were characterized for mean particle size and size distribution by dynamic light scattering particle size analysis; surface charges by zeta potential measurements; drug encapsulation efficiency and drug loading by UV/visible spectroscopy at 480 nm; particle morphology by atomic force microscopy (AFM); and surface composition by x-ray photoelectron spectroscopy (XPS). In vitro DOX release from the nanoparticles was measured at different pHs by UV/visible spectroscopy. In vitro cytotoxicity was evaluated by Sulforhodamine B colorimetric assay, and drug accumulation and efflux were determined by flow cytometric analysis. / RESULTS: DOX-loaded polymeric nanoparticles (DOX.NP) with mean particle size below 100 nm were obtained after appropriate optimization of the DOX.HCl or DOX.FB to polymer ratio. Compared with the neutralization method using DOX.HCl in the organic phase and sodium hydroxide in the aqueous phase, DOX.NP prepared with DOX.FB in the organic phase and pure water as antisolvent exhibited a similar mean particle size (< 100 nm) but a significantly higher drug encapsulation efficiency (48% as opposed to 25% for the neutralization method). Drug loading of DOX.NP prepared with DOX.FB could reach up to 14%. DOX.NP exhibited a pH-dependent drug release profile with a much higher cumulative release rate at acidic pHs. XPS revealed that no DOX was present on the nanoparticle surface. The cytotoxic effect on P-gp over-expressing LCC6/MDR cell line revealed insignificant differences between DOX.NP and DOX.HCl in buffered aqueous media. DOX.NP exhibited a marked increase in DOX cellular uptake relative to free DOX, as determined by flow cytometric analysis. Furthermore, DOX.NP showed a significant retention of intracellular concentration of DOX after efflux. / CONCLUSION: A rapid, convenient, and reproducible method for generating DOX-loaded polymeric nanoparticles with controllable particle size through antisolvent precipitation in a multi-inlet vortex mixer has been developed. The formulated nanoparticles displayed a pH-dependent sustained drug release profile and an enhanced DOX uptake into cancer cells. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Tam, Yu Tong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 119-130). / Abstracts also in Chinese. / ABSTRACT --- p.i / 摘要 --- p.iv / ACKNOWLEDGEMENTS --- p.vi / TABLE OF CONTENTS --- p.vii / LIST OF FIGURES --- p.x / LIST OF TABLES --- p.xiii / ABBREVIATIONS --- p.xv / Chapter CHAPTER 1. --- Introduction --- p.1 / Chapter 1.1 --- Rationale of the Study --- p.2 / Chapter 1.2 --- Doxorubicin --- p.3 / Chapter 1.2.1 --- Origin --- p.3 / Chapter 1.2.2 --- Physico-chemical properties --- p.6 / Chapter 1.2.3 --- Mechanism of Action --- p.7 / Chapter 1.2.4 --- Multidrug Resistance in Cancer --- p.7 / Chapter 1.2.4.1 --- Mechanisms of Multidrug Resistance --- p.8 / Chapter 1.3 --- Nanoparticles for Cancer Therapy --- p.9 / Chapter 1.3.1 --- Properties of Nanoparticles --- p.9 / Chapter 1.3.1.1 --- Small Particle Size --- p.10 / Chapter 1.3.1.2 --- High Payload Density --- p.11 / Chapter 1.3.1.3 --- Flexible Modification of Surface Properties --- p.11 / Chapter 1.3.2 --- Targeted Cancer Therapy --- p.12 / Chapter 1.3.2.1 --- Passive Tumor Targeting --- p.13 / Chapter 1.3.2.2 --- Active Tumor Targeting --- p.14 / Chapter 1.3.3 --- Reversal of Multidrug Resistance --- p.15 / Chapter 1.3.3.1 --- Endocytosis of Nanoparticles --- p.16 / Chapter 1.3.4 --- Nanoparticle Approaches to Anti-cancer Drug Delivery --- p.17 / Chapter 1.3.4.1 --- Liposomes --- p.18 / Chapter 1.3.4.2 --- Polymeric Nanoparticles --- p.18 / Chapter 1.4 --- Fabrication of Nanoparticles --- p.19 / Chapter 1.5 --- Aims and Scope of the Present Study --- p.21 / Chapter CHAPTER 2. --- Materials & Methods --- p.23 / Chapter 2.1 --- Materials --- p.24 / Chapter 2.1.1 --- Chemicals --- p.24 / Chapter 2.1.2 --- Materials for Cell Culture --- p.25 / Chapter 2.2 --- Methods --- p.26 / Chapter 2.2.1 --- Preparation of Doxorubicin Nanoparticles by Flash Nanoprecipitation --- p.26 / Chapter 2.2.1.1 --- Acid-Base Neutralization during Mixing --- p.26 / Chapter 2.2.1.2 --- Preparation of Doxorubicin Free Base before Mixing --- p.29 / Chapter 2.2.1.2.1 --- Doxorubicin Free Base Preparation --- p.29 / Chapter 2.2.2 --- Determination of Particle Size and Zeta Potential --- p.30 / Chapter 2.2.3 --- Co-stabilizers and Particle Stability --- p.30 / Chapter 2.2.4 --- Chemical Stability of Doxorubicin --- p.31 / Chapter 2.2.5 --- Determination of Encapsulation Efficiency --- p.31 / Chapter 2.2.5.1 --- Calibration Curve of Doxorubicin --- p.33 / Chapter 2.2.5.2 --- Dialysis --- p.33 / Chapter 2.2.5.3 --- Ultrafiltration --- p.35 / Chapter 2.2.6 --- Determination of Drug Loading --- p.35 / Chapter 2.2.6.1 --- Freeze Drying --- p.36 / Chapter 2.2.7 --- Morphological Examination --- p.36 / Chapter 2.2.7.1 --- X-ray Photoelectron Spectroscopy --- p.36 / Chapter 2.2.7.2 --- Atomic Force Microscopy --- p.36 / Chapter 2.2.8 --- In vitro release study --- p.37 / Chapter 2.2.8.1 --- Experimental Protocols --- p.37 / Chapter 2.2.8.2 --- Calculation of Cumulative Drug Release --- p.37 / Chapter 2.2.9 --- In vitro cytotoxicity study --- p.38 / Chapter 2.2.9.1 --- Sulforhodamine B Colorimetric Assay --- p.38 / Chapter 2.2.10 --- Cellular Uptake study --- p.39 / Chapter 2.2.10.1 --- Drug Accumulation Assay --- p.39 / Chapter 2.2.10.1 --- Drug Efflux Assay --- p.39 / Chapter 2.2.11 --- Analytical techniques --- p.40 / Chapter 2.2.11.1 --- UV/Vis Analysis --- p.40 / Chapter 2.2.11.2 --- HPLC Analysis --- p.40 / Chapter 2.2.12 --- Statistical analysis --- p.41 / Chapter CHAPTER 3. --- Results & Discussions --- p.42 / Chapter 3.1 --- Preparation of Doxorubicin Nanoparticles by Flash Nanoprecipitation --- p.43 / Chapter 3.1.1 --- Acid-Base Neutralization during Mixing --- p.44 / Chapter 3.1.1.1 --- Influence of Drug Concentration --- p.44 / Chapter 3.1.1.2 --- Influence of Alkaline Medium --- p.48 / Chapter 3.1.1.3 --- Influence of Drug-to-Polymer Ratios --- p.53 / Chapter 3.1.1.4 --- Particle Stability --- p.54 / Chapter 3.1.1.5 --- Co-stabilizers Tests on Stability --- p.55 / Chapter 3.1.1.5.1 --- Effect of PEG-PLA Co-polymers --- p.55 / Chapter 3.1.1.5.2 --- Effect of Co-stabilizers --- p.56 / Chapter 3.1.2 --- Preparation of Doxorubicin Free Base before Mixing --- p.62 / Chapter 3.1.2.1 --- Influence of Solvent System --- p.62 / Chapter 3.1.2.2 --- Influence of Drug-to-Polymer Ratios --- p.65 / Chapter 3.1.2.3 --- Drug Loading --- p.65 / Chapter 3.1.2.4 --- Particle Stability --- p.68 / Chapter 3.1.2.4.1 --- Concentrated Particle Stability --- p.73 / Chapter 3.2 --- Stability Studies on Doxorubicin Nanoparticle at Physiological and Cancer Cell pHs --- p.75 / Chapter 3.2.1 --- Chemical Stability --- p.75 / Chapter 3.2.2 --- Physical Stability --- p.77 / Chapter 3.3 --- In vitro Release Study --- p.79 / Chapter 3.4 --- Morphological Examination --- p.86 / Chapter 3.4.1 --- Zeta Potential --- p.92 / Chapter 3.5 --- In vitro Cellular Study --- p.93 / Chapter 3.5.1 --- Cellular Uptake Study --- p.93 / Chapter 3.5.1.1 --- Drug Accumulation and Drug Efflux --- p.93 / Chapter 3.5.2 --- Cytotoxicity of Blank Nanoparticles --- p.98 / Chapter 3.5.3 --- Cytotoxicity of DOX loaded Nanoparticles --- p.100 / Chapter CHAPTER 4. --- Conclusions --- p.106 / APPENDIX --- p.109 / REFERENCES --- p.118
137

Stimuli-responsive drug delivery system based on crown ether-coated, porous magnetic nanoparticles.

January 2011 (has links)
Lee, Siu Fung. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2011. / Includes bibliographical references (leaves 89-91). / Abstracts in English and Chinese. / Content --- p.i / Acknowledgments --- p.iv / Abstract --- p.V / Abbreviations and Acronyms --- p.vii / Publications Originated from the Work of this Thesis --- p.ix / Chapter Chapter 1- --- Introduction / Chapter 1.1 --- Nanoparticle-based drug delivery --- p.1 / Chapter 1.2 --- Magnetic nanoparticle --- p.5 / Chapter 1.3 --- Iron oxide nanoparticle --- p.6 / Chapter 1.3.1 --- Coprecipitation --- p.7 / Chapter 1.3.2 --- Hydrothermal reaction --- p.7 / Chapter 1.3.3 --- Sol-gel reaction --- p.8 / Chapter 1.3.4 --- Solvothermal reaction --- p.8 / Chapter 1.3.5 --- Architecture of iron oxide nanoparticles as drug carriers --- p.9 / Chapter 1.4 --- Supramolecular chemistry involved in controlled release drug delivery system --- p.10 / Chapter 1.5 --- Nano valve --- p.15 / Chapter 1.6 --- Aim of project --- p.17 / Chapter Chapter 2- --- Stimuli-Responsive Drug Delivery Nanosystems based on Fe3O4@SiO2@crown ether Nanoparticles / Chapter 2.1 --- Background --- p.19 / Chapter 2.2 --- Synthesis of the dibenzo-crown ethers --- p.21 / Chapter 2.3 --- Synthetic method of functionalized nanoparticles --- p.22 / Chapter 2.4 --- Characterization of dibenzo-crown ethers --- p.25 / Chapter 2.4.1 --- Nuclear magnetic resonance (NMR) spectroscopy --- p.25 / Chapter 2.4.2 --- Mass spectrometry (MS) --- p.27 / Chapter 2.4.3 --- Infrared (IR) spectroscopy --- p.28 / Chapter 2.5 --- Characterization of nanoparticles --- p.29 / Chapter 2.5.1 --- Transmission electron microscopy (TEM) --- p.29 / Chapter 2.5.2 --- Energy-dispersive X-ray (EDX) spectroscopy --- p.34 / Chapter 2.5.3 --- IR spectroscopy --- p.39 / Chapter 2.5.4 --- Thermogravimetric analysis (TGA) --- p.41 / Chapter 2.5.5 --- Nitrogen absorption/desorption isotherms --- p.44 / Chapter 2.6 --- Biological study of functionalized nanoparticles --- p.45 / Chapter 2.6.1 --- Cytotoxicity study --- p.45 / Chapter 2.6.2 --- Cell adhesion study --- p.46 / Chapter 2.6.3 --- Cell proliferation study --- p.47 / Chapter 2.6.4 --- Cellular uptake of nanoparticles --- p.50 / Chapter 2.7 --- Drug loading under different stimuli --- p.54 / Chapter 2.8 --- Drug release profile of nanoparticles --- p.61 / Chapter 2.9 --- MRI study of nanoparticles --- p.67 / Chapter 2.10 --- Conclusion --- p.69 / Chapter Chapter 3- --- Experimental Procedures / Chapter 3.1 --- General Information --- p.72 / Chapter 3.2 --- General procedure of synthesis of polyethers 3a-b --- p.73 / Chapter 3.2.1 --- Synthesis of 3a --- p.74 / Chapter 3.2.2 --- Synthesis of 3b --- p.74 / Chapter 3.3 --- General procedure of synthesis of diesters 4a-b --- p.75 / Chapter 3.3.1 --- Synthesis of 4a --- p.75 / Chapter 3.3.2 --- Synthesis of 4b --- p.76 / Chapter 3.4 --- General procedure of synthesis of dibenzo crown ether esters 5a-c --- p.77 / Chapter 3.4.1 --- Synthesis of 5a --- p.77 / Chapter 3.4.2 --- Synthesis of 5b --- p.78 / Chapter 3.4.3 --- Synthesis of 5c --- p.78 / Chapter 3.5 --- General procedure of synthesis of dibenzo-crown ethers la-c --- p.79 / Chapter 3.5.1 --- Synthesis of la --- p.80 / Chapter 3.5.2 --- Synthesis of lb --- p.80 / Chapter 3.5.3 --- Synthesis of lc --- p.81 / Chapter 3.6 --- Preparation of superparamagnetic Fe3O4 nanoparticle with an average diameter 120 nm --- p.81 / Chapter 3.7 --- Preparation of core/shell Fe3O4@SiO2 nanoparticle --- p.82 / Chapter 3.8 --- Preparation of Fe3O4@SiO2@meso(CTAB)-Si02 nanoparticle --- p.82 / Chapter 3.9 --- Preparation of Fe3O4@SiO2@meso(CTAB)-SiO2-NH2 nanoparticle --- p.83 / Chapter 3.10 --- Preparation of Fe3O4@SiO2@meso-SiO2@crown ether(a-c) nanoparticles --- p.83 / Chapter 3.11 --- Protocol of biological study of functionalized nanoparticles --- p.84 / Chapter 3.11.1 --- MTT protocol --- p.84 / Chapter 3.11.2 --- Cytotoxicity study --- p.84 / Chapter 3.11.3 --- Cell adhesion study --- p.85 / Chapter 3.11.4 --- Cell proliferation study --- p.85 / Chapter 3.11.5 --- Cellular uptake of functionalized nanoparticles --- p.85 / Chapter 3.12 --- Drug loading of functionalized nanoparticles --- p.86 / Chapter 3.13 --- Drug release profile of functionalized nanoparticles --- p.87 / Chapter 3.14 --- MRI study of nanoparticles --- p.87 / References --- p.89 / Appendix / List of Spectra --- p.A-1
138

Development of Novel hydrogels for protein drug delivery

Mawad, Damia, Graduate School of Biomedical Engineering, Faculty of Engineering, UNSW January 2005 (has links)
Introduction: Embolic agents are used to block blood flow of hypervascular tumours, ultimately resulting in target tissue necrosis. However, this therapy is limited by the formation of new blood vessels within the tumour, a process known as angiogenesis. Targeting angiogenesis led to the discovery of anti-angiogenic factors, large molecular weight proteins that can block the angiogenic process. The aim of this research is development of poly (vinyl alcohol) (PVA) aqueous solutions that cross-link in situ to form a hydrogel that functions as an embolic agent for delivery of macromolecular drugs. Methods: PVA (14 kDa, 83% hydrolysed), functionalised by 7 acrylamide groups per chain, was used to prepare 10, 15, and 20wt% non-degradable hydrogels, cured by UV or redox initiation. Structural properties were characterised and the release of FITCDextran (20kDa) was quantified. Degradable networks were then prepared by attaching to PVA (83% and 98 % hydrolysed) ester linkages with an acrylate end group. The effect on degradation profiles was assessed by varying parameters such as macromer concentration, cross-linking density, polymer backbone and curing method. To further enhance the technology, radiopaque degradable PVA was synthesised, and degradation profiles were determined. Cell growth inhibition of modified PVA and degradable products were also investigated. Results: Redox initiation resulted in non-degradable PVA networks of well-controlled structural properties. Increasing the solid content from 10 to 20wt% prolonged the release time from few hours to ~ 2 days but had no effect on the percent release, with only a maximum release of 65% achieved. Ester attachment to the PVA allowed flexibility in designing networks of variable swelling behaviors and degradation times allowing ease of tailoring for specific clinical requirements. Synthesis of radiopaque degradable PVA hydrogels was successful without affecting the polymer solubility in water or its ability to polymerize by redox. This suggested that this novel hydrogel is a potential liquid embolic with enhanced X-ray visibility. Degradable products had negligible cytotoxicity. Conclusion: Novel non-degradable and radiopaque degradable PVA hydrogels cured by redox initiation were developed in this research. The developed PVA hydrogels showed characteristics in vitro that are desirable for the in vivo application as release systems for anti-angiogenic factors.
139

Polymeric microneedles for transdermal drug delivery

Park, Jung-Hwan 05 1900 (has links)
No description available.
140

Evaluation of novel cross-linking agents for gelatin/collagen matrices

Schuler, Brenda J. January 1900 (has links)
Thesis (Ph. D.)--West Virginia University, 2004. / Title from document title page. Document formatted into pages; contains xviii, 279 p. : ill. (some col.). Vita. Includes abstract. Includes bibliographical references.

Page generated in 0.063 seconds