• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Cardiac State Diagram : A new method for assessing cardiac mechanics

Johnson, Jonas January 2015 (has links)
<p>QC 20170306</p>
2

Implementação de uma rede neural em ambiente foundation fieldbus para computação de vazão simulando um instrumento multivariável

Borg, Denis 20 June 2011 (has links)
Esta dissertação propõe o desenvolvimento de uma rede neural artificial (RNA) direcionada a ambientes foundation fieldbus para realização do cálculo de vazão em dutos fechados. Para tanto, a metodologia proposta utiliza-se de medidas de pressão, temperatura e pressão diferencial, as quais normalmente estão disponíveis em plantas industriais. A principal motivação do emprego das redes neurais reside no seu baixo custo e simplicidade de implementação, o que possibilita o emprego de apenas blocos fieldbus padrões tornando a metodologia independente do fabricante. Foi utilizada uma rede perceptron multicamadas com algoritmo de treinamento backpropagation de Levenberg-Marquardt. O treinamento foi realizado numa programação elaborada para o software Matlab TM. A arquitetura da rede neural foi determinada por métodos empíricos variando-se o número de neurônios e de camadas neurais até se atingir um erro aceitável na prática. Após esses treinamentos foi desenvolvida uma programação para realizar os cálculos de vazão em um ambiente foundation fieldbus utilizando-se para tanto o software DeltaV TM do fabricante Emerson Process Management. Foram obtidos resultados com erro relativo médio de valor de vazão em torno de 1.43% para um primeiro cenário utilizando uma placa de orifício e ar como fluido, e de 0,073% para um segundo cenário utilizando uma placa de orifício e gás natural como fluido, com relação aos valores obtidos através do instrumento multivariável 3095MV TM do fabricante Rosemount. Os valores de erro encontrados validam o método desenvolvido nessa dissertação. / This dissertation proposes the development of an artificial neural network (ANN) directed to foundation fieldbus environment for calculation of flow in closed ducts. The proposed methodology uses measurements of pressure, temperature and differential pressure, which are usually available in industrial plants. The main motivation of the use of neural networks lies in their low cost and simplicity of implementation, which allows the use of standard fieldbus blocks by just making the method independent of the manufacturer. It was used a multilayer perceptron network with backpropagation training and algorithm from Levenberg-Marquardt. The training was programmed in the software Matlab TM. The architecture of the ANN was determined by empirical methods by varying the number of neurons and neural layers until it reaches an acceptable error. After such trainings, it was developed a program to perform the flow calculations in an foundation fieldbus environment using Emerson Process Management\'s DeltaV TM software. The results were obtained with an average relative error of flow rate of 1.43% for the first scenario using an orifice plate and air as a process fluid, and 0.073% for a second scenario using an orifice plate and natural gas as the fluid related to the values obtained from Rosemount 3095MV TM multivariable instrument. The values of error found validate the method developed in this dissertation.
3

Implementação de uma rede neural em ambiente foundation fieldbus para computação de vazão simulando um instrumento multivariável

Denis Borg 20 June 2011 (has links)
Esta dissertação propõe o desenvolvimento de uma rede neural artificial (RNA) direcionada a ambientes foundation fieldbus para realização do cálculo de vazão em dutos fechados. Para tanto, a metodologia proposta utiliza-se de medidas de pressão, temperatura e pressão diferencial, as quais normalmente estão disponíveis em plantas industriais. A principal motivação do emprego das redes neurais reside no seu baixo custo e simplicidade de implementação, o que possibilita o emprego de apenas blocos fieldbus padrões tornando a metodologia independente do fabricante. Foi utilizada uma rede perceptron multicamadas com algoritmo de treinamento backpropagation de Levenberg-Marquardt. O treinamento foi realizado numa programação elaborada para o software Matlab TM. A arquitetura da rede neural foi determinada por métodos empíricos variando-se o número de neurônios e de camadas neurais até se atingir um erro aceitável na prática. Após esses treinamentos foi desenvolvida uma programação para realizar os cálculos de vazão em um ambiente foundation fieldbus utilizando-se para tanto o software DeltaV TM do fabricante Emerson Process Management. Foram obtidos resultados com erro relativo médio de valor de vazão em torno de 1.43% para um primeiro cenário utilizando uma placa de orifício e ar como fluido, e de 0,073% para um segundo cenário utilizando uma placa de orifício e gás natural como fluido, com relação aos valores obtidos através do instrumento multivariável 3095MV TM do fabricante Rosemount. Os valores de erro encontrados validam o método desenvolvido nessa dissertação. / This dissertation proposes the development of an artificial neural network (ANN) directed to foundation fieldbus environment for calculation of flow in closed ducts. The proposed methodology uses measurements of pressure, temperature and differential pressure, which are usually available in industrial plants. The main motivation of the use of neural networks lies in their low cost and simplicity of implementation, which allows the use of standard fieldbus blocks by just making the method independent of the manufacturer. It was used a multilayer perceptron network with backpropagation training and algorithm from Levenberg-Marquardt. The training was programmed in the software Matlab TM. The architecture of the ANN was determined by empirical methods by varying the number of neurons and neural layers until it reaches an acceptable error. After such trainings, it was developed a program to perform the flow calculations in an foundation fieldbus environment using Emerson Process Management\'s DeltaV TM software. The results were obtained with an average relative error of flow rate of 1.43% for the first scenario using an orifice plate and air as a process fluid, and 0.073% for a second scenario using an orifice plate and natural gas as the fluid related to the values obtained from Rosemount 3095MV TM multivariable instrument. The values of error found validate the method developed in this dissertation.

Page generated in 0.0247 seconds