Spelling suggestions: "subject:"demand 3reduction"" "subject:"demand coeduction""
1 |
Analyzing sustainable energy opportunities for a small scale off-grid facility: a case study at Experimental Lakes Area (ELA), OntarioDuggirala, Bhanu 27 July 2010 (has links)
This thesis explored the opportunities to reduce energy demand and renewable energy feasibility at an off-grid science “community” called the Experimental Lakes Area (ELA) in Ontario. Being off-grid, ELA is completely dependent on diesel and propane fuel supply for all its electrical and heating needs, which makes ELA vulnerable to fluctuating fuel prices. As a result ELA emits a large amount of greenhouse gases (GHG) for its size. Energy efficiency and renewable energy technologies can reduce energy consumption and consequently energy cost, as well as GHG.
Energy efficiency was very important to ELA due to the elevated fuel costs at this remote location. Minor upgrades to lighting, equipment and building envelope were able to reduce energy costs and reduce load. Efficient energy saving measures were recommended that save on operating and maintenance costs, namely, changing to LED lights, replacing old equipment like refrigerators and downsizing of ice makers. This resulted in a 4.8% load reduction and subsequently reduced the initial capital cost for biomass by $27,000, by $49,500 for wind power and by $136,500 for solar power.
Many alternative energies show promise as potential energy sources to reduce the diesel and propane consumption at ELA including wind energy, solar heating and bio-mass. A biomass based CHP system using the existing diesel generators as back-up has the shortest pay back period of the technologies modeled. The biomass based CHP system has a pay back period of 4.1 years at $0.80 per liter of diesel, as diesel price approaches $ 2.00 per liter the pay back period reduces to 0.9 years, 50% the generation cost compared to present generation costs. Biomass has been successfully tried and tested in many off-grid communities particularly in a small-scale off-grid setting in North America and internationally. Also, the site specific solar and wind data show that ELA has potential to harvest renewable resources and produce heat and power at competitive rates compared to diesel and propane.
|
2 |
Analyzing sustainable energy opportunities for a small scale off-grid facility: a case study at Experimental Lakes Area (ELA), OntarioDuggirala, Bhanu 27 July 2010 (has links)
This thesis explored the opportunities to reduce energy demand and renewable energy feasibility at an off-grid science “community” called the Experimental Lakes Area (ELA) in Ontario. Being off-grid, ELA is completely dependent on diesel and propane fuel supply for all its electrical and heating needs, which makes ELA vulnerable to fluctuating fuel prices. As a result ELA emits a large amount of greenhouse gases (GHG) for its size. Energy efficiency and renewable energy technologies can reduce energy consumption and consequently energy cost, as well as GHG.
Energy efficiency was very important to ELA due to the elevated fuel costs at this remote location. Minor upgrades to lighting, equipment and building envelope were able to reduce energy costs and reduce load. Efficient energy saving measures were recommended that save on operating and maintenance costs, namely, changing to LED lights, replacing old equipment like refrigerators and downsizing of ice makers. This resulted in a 4.8% load reduction and subsequently reduced the initial capital cost for biomass by $27,000, by $49,500 for wind power and by $136,500 for solar power.
Many alternative energies show promise as potential energy sources to reduce the diesel and propane consumption at ELA including wind energy, solar heating and bio-mass. A biomass based CHP system using the existing diesel generators as back-up has the shortest pay back period of the technologies modeled. The biomass based CHP system has a pay back period of 4.1 years at $0.80 per liter of diesel, as diesel price approaches $ 2.00 per liter the pay back period reduces to 0.9 years, 50% the generation cost compared to present generation costs. Biomass has been successfully tried and tested in many off-grid communities particularly in a small-scale off-grid setting in North America and internationally. Also, the site specific solar and wind data show that ELA has potential to harvest renewable resources and produce heat and power at competitive rates compared to diesel and propane.
|
3 |
Demand reduction and responsive strategies for underground miningWilliams, Nicholas Charles January 2014 (has links)
This thesis presents a demand reduction and responsive strategy for underground mining operations. The thesis starts with a literature review and background research on global energy, coal mining and the energy related issues that the mining industry face everyday. The thesis then goes on to discuss underground mine electrical power systems, data acquisition, load profiling, priority ranking, load shedding and demand side management in mining. Other areas presented in this thesis are existing energy reduction techniques, including: high efficiency motors, motor speed reduction and low energy lighting. During the thesis a data acquisition system was designed and installed at a UK Coal colliery and integrated into the mines existing supervisory control and data acquisition (SCADA) system. Design and installation problems were overcome with the construction of a test meter and lab installation and testing. A detailed explanation of the system design and installation along with the data analysis of the data from the installed system. A comprehensive load profile and load characterisation system was developed by the author. The load profiling system is comprehensive allows the definition of any type of load profile. These load profiles are fixed, variable and transient load types. The loads output and electrical demand are all taken into consideration. The load characterisation system developed is also very comprehensive. The LC MATRIX is used with the load profiles and the load characteristics to define off-line schedules. A set of unique real-time decision algorithms are also developed by the author to operate the off-line schedules within the desired objective function. MATLAB Simulation is used to developed and test the systems. Results from these test are presented. Application of the developed load profiling and scheduling systems are applied to the data collected from the mine, the results of this and the cost savings are also presented.
|
4 |
The role of user centred design in domestic energy demand reductionHaines, Victoria January 2014 (has links)
The domestic sector currently accounts for approximately a third of the UK s energy use and so energy demand reduction in the domestic sector is a key part of the UK s strategy for carbon reduction. However, energy demand reduction has typically been addressed from an engineering perspective, with little consideration of the requirements of users. This PhD submission aims to identify how qualitative information about users experiences, values and practices relating to UK domestic energy demand reduction can be collected and presented effectively to an engineering audience and incorporated into engineering-focused energy research. User centred design is presented as a viable approach to understanding the context of energy use in UK homes and specifying requirements of the householders; as a way of ensuring user needs are included in this socio-technical problem space. This requires presentation of information about human behaviour in a form that is timely and appropriate to the engineering audience, who take a positivist view, preferring facts and figures to descriptions and anecdotes. A collection of nine publications, mostly peer-reviewed journal papers, by the thesis author and her co-authors is presented. Publications spanning from 2006 to 2014 illustrate a range of approaches to providing user centred information, from literature review to complex householder studies, which can provide information to enhance the engineering data and so provide additional insight and understanding. The research findings within the individual papers add to the body of knowledge on domestic energy use. In addition, the research identifies a number of roles where user centred design contributes to understanding of home energy use. From providing background and raising awareness of the presence of users within a system, to contextual understanding and the specification of user requirements, through to more sophisticated user characterisation, it is argued that user centred design can offer a significant contribution to the field. Future application of user information into engineering models, together with large scale, longitudinal studies of home energy use are proposed, building on the contributions of this thesis.
|
5 |
A Techno-Economic Analysis of Employing Lithium Iron Phosphate Battery Energy Storage System for Peak Demand Reduction of Industrial Manufacturing SystemWong, Alexander T. 21 June 2021 (has links)
No description available.
|
6 |
Human behaviour and energy demand : How behavioural science can be used to reduceenergy demand in the residential sectorKaczmarek, Haiko January 2015 (has links)
The threat of human induced climate change is imminent. The reason is an everyincreasing demand for energy and products, producing more and more greenhousegas emissions. Everybody needs to take responsibility now. The estimations are thatwith 2% annual energy savings from residential households 12TWh and 3.3 billionmetric tonnes of CO2 can be saved per year. Greenely, a startup from KIC InnoEnergy,wants to engage residential households to change their energy behaviour athome. They combine a smartphone application with the smart meter infrastructureto reduce households energy demand. Changing behaviour is complicated and researchprior to this thesis revealed that information and economic incentives aloneare not sufficient.A simple and proven technique to change behaviour is Nudging. A gentle pushin the right direction while leaving the freedom of choice. A popular example is aprinted fly in the men’s urinal. It nudges them to aim at the fly. The cleaning costswere reduced by 80% at the Schiphol Airport Amsterdam.Without application usage change is impossible for Greenely. Their main contacttool to households is a smartphone application. The smartphone market is vast andcompetition between applications is strong. Therefore the system outline needs toprecede Nudging for ongoing engagement and long term change. To achieve thatGamification practices are implemented. It is the incorporation of game design intonon-gaming contexts to achieve engagement through motivation and fun.This master thesis is done in cooperation with Greenely and focuses on residentialdemand reduction schemas, Nudging and Gamification. The aim is to improvetheir actual application and create an outline for an improved version that promoteslong term behaviour change. The result incorporates the most suitable features fromthe relevant topics and enables long term change.
|
7 |
Towards the Integration of Low-cost Sensors into Smart Building Systems for Indoor Air Quality PurposesYoung, Matthew W. January 2019 (has links)
No description available.
|
8 |
Co-designing with “She Has a Name”: Active Learning for Johns and Best Practice Tools for John School AdministratorsFontenele de Matos Rodrigues, Natalia January 2022 (has links)
No description available.
|
9 |
An Expert-based Approach for Grid Peak Demand Curtailment using HVAC Thermostat Setpoint Interventions in Commercial BuildingsRamdaspalli, Sneha Raj 01 July 2021 (has links)
This dissertation explores the idea of inducing grid peak demand curtailment by turning commercial buildings into interactive assets for building owners during the demand control period. The work presented here is useful for both ab initio design of new sites and for existing or retrofitted sites.
An analytical hierarchy process (AHP)-based framework is developed to curtail the thermal load effectively across a group of commercial buildings. It gives an insight into the amount of peak demand reduction possible for each building, subject to indoor thermal comfort constraints as per ASHRAE standards. Furthermore, the detailed operation of buildings in communion with the electric grid is illustrated through case studies. This analysis forms an outline for the assessment of transactive energy opportunities for commercial buildings in distribution system operations and lays the foundation for a seamless building-to-grid integration framework.
The contribution of this dissertation is fourfold – (a) an efficient method of developing high-fidelity physics-based building energy models for understanding the realistic operation of commercial buildings, (b) identification of minimal dataset to achieve a target accuracy for the building energy models (c) quantification of building peak demand reduction potential and corresponding energy savings across a stipulated range of thermostat setpoint temperatures and (d) AHP-based demand curtailment scheme.
By careful modeling, it is shown that commercial building models developed using this methodology are both accurate and robust. As a result, the proposed approach can be extended to other commercial buildings of diverse characteristics, independent of the location. The methodology presented here takes a holistic approach towards building energy modeling by accounting for several building parameters and interactions between them. In addition, parametric analysis is done to identify a useful minimal dataset required to achieve a specified accuracy for the building energy models. This thesis describes the concept of commercial buildings as interactive assets in a transactive grid environment and the idea behind its working. / Doctor of Philosophy / This dissertation titled "An Expert-based Approach for Grid Peak Demand Curtailment using HVAC Thermostat Setpoint Interventions in Commercial Buildings" tackles two important challenges in the energy management domain: –electric grid peak demand curtailment and energy savings in commercial buildings.
The distinguishing feature of the proposed solution lies in addressing these challenges solely through demand-side management (DSM) strategies, which include HVAC thermostat setpoint interventions and lighting control. We present a methodology for developing highly accurate building energy models that serve as digital twins of actual buildings. These digital replicas can be used to quantify the impact of various interventions and reflect the realistic operation of commercial buildings across varied conditions. This enables building owners to control demand intelligently and transact energy effectively in the electricity market.
The development of Internet of Things (IoT) market and advanced technologies such as smart meters and smart thermostats allows for the design of novel strategies that address traditional challenges faced by electric grid operators. This dissertation elaborates on how smart buildings can leverage IoT-based solutions to participate in the electricity market during demand control periods. We also developed an expert opinion-based demand curtailment allocation scheme resulting in grid peak demand reduction. The numerical results obtained reinforce the effectiveness of the proposed solution across varied climatic conditions.
|
10 |
Evaluation of retrofitting strategies for post-war office buildingsDuran, Ozlem January 2018 (has links)
The energy used in non-domestic buildings accounts for 18 % of the energy use in the UK. Within the non-domestic building stock, 11 % of office buildings have a very high influence on the energy use. Thus, the retrofit of office buildings has a significant potential for energy efficiency and greenhouse gas emissions reduction within the non-domestic building stock. However, the replacement rate of existing buildings by new-build is only around 1-3 % per annum. Post-war office buildings, (built between 1945 and 1985) represent a promising sector for retrofit and energy demand reduction. They have disproportionately high energy consumption because many were built before the building regulations addressed thermal performance. The aim of the research is to evaluate the retrofit strategies for post-war office buildings accounting for the improved energy efficiency, thermal comfort and hence, productivity, capital and the running costs. The research seeks to provide the optimal generic retrofit strategies and illustrate sophisticated methods which will be the basis for guidelines about post-war office building retrofit. For this, multiple combinations of heating and cooling retrofit measures were applied to representative models (Exemplar) of post-war office buildings using dynamic thermal simulation modelling. The retrofit strategies include; applying envelope retrofit to UK Building Regulations Part L2B and The Passivhaus Institue EnerPHit standards for heating demand reduction and winter comfort. Passive cooling interventions such as shading devices and night ventilation and active cooling intervention such as mixed-mode ventilation were applied to overcome summer overheating. All retrofit combinations were evaluated considering future climate, inner and outer city locations and different orientations. In summary, the results showed that under current weather conditions Part L2B standard retrofit with passive cooling provided the optimum solution. In 2050, however, both Part L2B retrofit naturally ventilated cases with the passive cooling measures and EnerPHit retrofit mixed-mode ventilation cases provide the requisite thermal comfort and result in a similar range of energy consumption. It was concluded that to create generic retrofit solutions which could be applied to a given typology within the building stock is possible. The methodology and the Exemplar model could be used in future projects by decision-makers and the findings and analysis of the simulations could be taken as guidance for the widespread retrofit of post-war office buildings.
|
Page generated in 0.0769 seconds