Spelling suggestions: "subject:"dempstersche evidence theory"" "subject:"dempsterschen evidence theory""
1 |
DS-ARM: An Association Rule Based Predictor that Can Learn from Imperfect DataSooriyaarachchi Wickramaratna, Kasun Jayamal 13 January 2010 (has links)
Over the past decades, many industries have heavily spent on computerizing their work environments with the intention to simplify and expedite access to information and its processing. Typical of real-world data are various types of imperfections, uncertainties, ambiguities, that have complicated attempts at automated knowledge discovery. Indeed, it soon became obvious that adequate methods to deal with these problems were critically needed. Simple methods such as "interpolating" or just ignoring data imperfections being found often to lead to inferences of dubious practical value, the search for appropriate modification of knowledge-induction techniques began. Sometimes, rather non-standard approaches turned out to be necessary. For instance, the probabilistic approaches by earlier works are not sufficiently capable of handling the wider range of data imperfections that appear in many new applications (e.g., medical data). Dempster-Shafer theory provides a much stronger framework, and this is why it has been chosen as the fundamental paradigm exploited in this dissertation. The task of association rule mining is to detect frequently co-occurring groups of items in transactional databases. The majority of the papers in this field concentrate on how to expedite the search. Less attention has been devoted to how to employ the identified frequent itemsets for prediction purposes; worse still, methods to tailor association-mining techniques so that they can handle data imperfections are virtually nonexistent. This dissertation proposes a technique referred to by the acronym DS-ARM (Dempster-Shafer based Association Rule Mining) where the DS-theoretic framework is used to enhance a more traditional association-mining mechanism. Of particular interest is here a method to employ the knowledge of partial contents of a "shopping cart" for the prediction of what else the customer is likely to add to it. This formalized problem has many applications in the analysis of medical databases. A recently-proposed data structure, an itemset tree (IT-tree), is used to extract association rules in a computationally efficient manner, thus addressing the scalability problem that has disqualified more traditional techniques from real-world applications. The proposed algorithm is based on the Dempster-Shafer theory of evidence combination. Extensive experiments explore the algorithm's behavior; some of them use synthetically generated data, others relied on data obtained from a machine-learning repository, yet others use a movie ratings dataset or a HIV/AIDS patient dataset.
|
2 |
Monitoramento da saúde humana através de sensores: análise de incertezas contextuais através da teoria da evidência de Dempster-Shafer. / Human health monitoring by sensors: analysis of contextual uncertainties through Dempster-Shafer evidence theory.Silva, Kátia Cilene Neles da 26 November 2012 (has links)
O monitoramento remoto da saúde humana envolve basicamente o emprego da tecnologia de rede de sensores como meio de captura dos dados do paciente em observação e todo ambiente em que este se encontra. Esta tecnologia favorece o monitoramento remoto de pacientes com doenças cardíacas, com problemas respiratórios, com complicações pós-operatórias e ainda pessoas em tratamento residencial, dentre outros. Um importante elemento dos sistemas de monitoramento remoto da saúde é a sua capacidade de interagir com o meio no qual está inserido possibilitando-lhe, por exemplo, agir como provedor de informação e serviços relevantes para o usuário. Essa interação com o ambiente imputa a esse sistema características relacionadas com uma aplicação sensível ao contexto, pois esses sistemas reagem e se adaptam às mudanças nos ambientes, provendo-lhes assistência inteligente e proativa. Outro aspecto observado em sistemas de monitoramento remoto da saúde humana está relacionado às incertezas associadas à tecnologia empregada como meio para obtenção e tratamento dos dados e, aos dados que serão apresentados aos usuários especialistas - médicos. Entende-se que incertezas são elementos inevitáveis em qualquer aplicação ubíqua e sensível ao contexto, podendo ser geradas por dados incompletos ou imperfeitos. No âmbito do monitoramento da saúde humana, fatores como a influência mútua entre dados fisiológicos, comportamentais e ambientais também podem ser apontados como potenciais geradores de informação contextual incerta, além daqueles inerentes às aplicações ubíquas e sensíveis ao contexto. Nesta pesquisa, considera-se que cada sensor captura um tipo de dado e o envia para uma estação localizada na residência do paciente. O objetivo deste trabalho é apresentar um processo para a análise das incertezas contextuais presentes no monitoramento da saúde humana através de sensores. O processo empregado baseou-se na Teoria da Evidência de Dempster- Shafer e no Modelo de Fatores de Certeza. No processo denominado PRANINC, cada dado capturado pelos diferentes sensores é considerado uma evidência e o conjunto dessas evidências é considerado na formação das hipóteses. Três classes de incertezas contextuais foram especificadas: as incertezas provenientes da tecnologia empregada na transmissão dos dados capturados por sensores; as incertezas relacionadas aos próprios sensores, que estão sujeitos a erros e defeitos; e, as incertezas associadas à influência mútua entre as variáveis observadas. O método foi empregado a partir da realização de experimentos sobre arquivos com dados fisiológicos de pacientes reais, aos quais foram adicionados elementos comportamentais e ambientais. Como resultado, foi possível confirmar que o contexto influencia nos dados repassados pelo sistema de monitoramento, e que as incertezas contextuais podem influenciar na qualidade das informações fornecidas, devendo estas serem consideradas pelo especialista. / The remote monitoring of human health basically involves the use of sensor network technology as a means of capturing patient data and observation, in every environment. The sensor technology facilitates remote monitoring of patients with heart disease, respiratory problems, postoperative complications and even people in residential treatment. An important element of the health monitoring system is its ability to interact with the environment which allows, for example, act as a provider of relevant information and services to the user. The interaction with the environment provides to the system the characteristics related to a context-aware application, once this kind of system can react and adapt itself in face of environment´s changes, through a proactive and intelligent assistance. Another significant aspect of health monitoring systems is related to the uncertainties associated with the technology used as a means for obtaining and processing the data sensed by sensors, and the data which will be presented to the experts users - physicians. Uncertainties are inevitable elements in any ubiquitous and context-aware application and it can be generated by incomplete or imperfect data. In the human health monitoring by sensors factors, such as the mutual influence between physiological, behavioral and environmental data are mentioned as potential generators of uncertain contextual information. This research take into consideration that each sensor captures a data type and sends it to a station located in the patient\'s home. The objective of this paper is to present a process to analyze the contextual uncertainties present in the monitoring of human health via sensors. The method used was based on the Dempster-Shafer Evidence Theory and The Uncertainty Factor Model. The process named PRANINC, considers each data captured, by different sensors, as evidence and, all of the evidences are considered in the formation of hypotheses. Three contextual classes of uncertainties were specified: the uncertainties arising from the technology employed in transmitting the data captured by sensors, the uncertainties related to the actual sensors, which are subject to errors and defects, and the uncertainties associated with the mutual influence between the observed variables. The method was employed through conducting experiments on files with physiological data of real patients, to which, were added behavioral and environmental factors. As a result was possible to confirm that the context influences the data transferred by the monitoring system and that contextual uncertainties may influence the quality of the information which shall be considered by the specialist.
|
3 |
Monitoramento da saúde humana através de sensores: análise de incertezas contextuais através da teoria da evidência de Dempster-Shafer. / Human health monitoring by sensors: analysis of contextual uncertainties through Dempster-Shafer evidence theory.Kátia Cilene Neles da Silva 26 November 2012 (has links)
O monitoramento remoto da saúde humana envolve basicamente o emprego da tecnologia de rede de sensores como meio de captura dos dados do paciente em observação e todo ambiente em que este se encontra. Esta tecnologia favorece o monitoramento remoto de pacientes com doenças cardíacas, com problemas respiratórios, com complicações pós-operatórias e ainda pessoas em tratamento residencial, dentre outros. Um importante elemento dos sistemas de monitoramento remoto da saúde é a sua capacidade de interagir com o meio no qual está inserido possibilitando-lhe, por exemplo, agir como provedor de informação e serviços relevantes para o usuário. Essa interação com o ambiente imputa a esse sistema características relacionadas com uma aplicação sensível ao contexto, pois esses sistemas reagem e se adaptam às mudanças nos ambientes, provendo-lhes assistência inteligente e proativa. Outro aspecto observado em sistemas de monitoramento remoto da saúde humana está relacionado às incertezas associadas à tecnologia empregada como meio para obtenção e tratamento dos dados e, aos dados que serão apresentados aos usuários especialistas - médicos. Entende-se que incertezas são elementos inevitáveis em qualquer aplicação ubíqua e sensível ao contexto, podendo ser geradas por dados incompletos ou imperfeitos. No âmbito do monitoramento da saúde humana, fatores como a influência mútua entre dados fisiológicos, comportamentais e ambientais também podem ser apontados como potenciais geradores de informação contextual incerta, além daqueles inerentes às aplicações ubíquas e sensíveis ao contexto. Nesta pesquisa, considera-se que cada sensor captura um tipo de dado e o envia para uma estação localizada na residência do paciente. O objetivo deste trabalho é apresentar um processo para a análise das incertezas contextuais presentes no monitoramento da saúde humana através de sensores. O processo empregado baseou-se na Teoria da Evidência de Dempster- Shafer e no Modelo de Fatores de Certeza. No processo denominado PRANINC, cada dado capturado pelos diferentes sensores é considerado uma evidência e o conjunto dessas evidências é considerado na formação das hipóteses. Três classes de incertezas contextuais foram especificadas: as incertezas provenientes da tecnologia empregada na transmissão dos dados capturados por sensores; as incertezas relacionadas aos próprios sensores, que estão sujeitos a erros e defeitos; e, as incertezas associadas à influência mútua entre as variáveis observadas. O método foi empregado a partir da realização de experimentos sobre arquivos com dados fisiológicos de pacientes reais, aos quais foram adicionados elementos comportamentais e ambientais. Como resultado, foi possível confirmar que o contexto influencia nos dados repassados pelo sistema de monitoramento, e que as incertezas contextuais podem influenciar na qualidade das informações fornecidas, devendo estas serem consideradas pelo especialista. / The remote monitoring of human health basically involves the use of sensor network technology as a means of capturing patient data and observation, in every environment. The sensor technology facilitates remote monitoring of patients with heart disease, respiratory problems, postoperative complications and even people in residential treatment. An important element of the health monitoring system is its ability to interact with the environment which allows, for example, act as a provider of relevant information and services to the user. The interaction with the environment provides to the system the characteristics related to a context-aware application, once this kind of system can react and adapt itself in face of environment´s changes, through a proactive and intelligent assistance. Another significant aspect of health monitoring systems is related to the uncertainties associated with the technology used as a means for obtaining and processing the data sensed by sensors, and the data which will be presented to the experts users - physicians. Uncertainties are inevitable elements in any ubiquitous and context-aware application and it can be generated by incomplete or imperfect data. In the human health monitoring by sensors factors, such as the mutual influence between physiological, behavioral and environmental data are mentioned as potential generators of uncertain contextual information. This research take into consideration that each sensor captures a data type and sends it to a station located in the patient\'s home. The objective of this paper is to present a process to analyze the contextual uncertainties present in the monitoring of human health via sensors. The method used was based on the Dempster-Shafer Evidence Theory and The Uncertainty Factor Model. The process named PRANINC, considers each data captured, by different sensors, as evidence and, all of the evidences are considered in the formation of hypotheses. Three contextual classes of uncertainties were specified: the uncertainties arising from the technology employed in transmitting the data captured by sensors, the uncertainties related to the actual sensors, which are subject to errors and defects, and the uncertainties associated with the mutual influence between the observed variables. The method was employed through conducting experiments on files with physiological data of real patients, to which, were added behavioral and environmental factors. As a result was possible to confirm that the context influences the data transferred by the monitoring system and that contextual uncertainties may influence the quality of the information which shall be considered by the specialist.
|
4 |
Development of Adaptive Computational Algorithms for Manned and Unmanned Flight SafetyElkin, Colin P. January 2018 (has links)
No description available.
|
Page generated in 0.0685 seconds