• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 61
  • 34
  • 25
  • 13
  • 6
  • 5
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 176
  • 35
  • 21
  • 20
  • 19
  • 17
  • 17
  • 17
  • 16
  • 16
  • 16
  • 15
  • 14
  • 14
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Synthesis and electrochemical characterization of highly monodisperse dendrimer-templated monolayer protected clusters

Kim, Yong-Gu 12 April 2006 (has links)
We described the synthesis of multilayer organic thin films prepared by sequential vapor-phase coupling of monomers. The reactions were carried out at room temperature and atmospheric pressure. Films prepared using up to six sequential coupling reactions are reported. Homobifunctionalized monomers, such as hexamethylenediamine, react primarily via a single endgroup rather than cross coupling to the reactive surface via both reactive groups. We synthesized bifunctionalized polyamidoamine (PAMAM) dendrimers having both quaternary ammonium groups and primary amines on their periphery were prepared. The high positive charge on the surface of these dendrimers prevents agglomeration, and the unquanternized amine groups provide a reactive handle for immobilizing the dendrimer-encapsulated nanoparticles onto surfaces. We prepared highly monodisperse, 1-2 nm diameter Au nanoparticles using bifunctionalized PAMAM dendrimers as templates. The synthesis is carried out in water, takes less than 30 min, and requires no subsequent purification. The high monodispersity is a function of the template synthesis, which avoids size variations arising from random nucleation and growth phenomena, and the use of magic number equivalent ratios of AuCl4-/dendrimer. We investigated the electrochemical properties of Au, Pd and PdAu monolayer-protected clusters (MPCs), prepared by dendrimer-templating and subsequent extraction, are described. Purification of the extracted Au, Pd and PdAu nanoparticles was not required to obtain well-defined differential pulse voltammetry peaks arising from quantized double-layer charging. The calculated sizes of the nanoparticles were essentially identical to those determined from the electrochemical data. The capacitance of the particles was independent of the composition of core metal.
22

Synthesis and application of melamine-based dendrimer/sba-15 hybrid materials

Lunn, Jonathan David 17 September 2007 (has links)
Porous inorganic materials that can be used in applications such as catalysis and separations have been intensely studied due to their potential stability, ease of recovery and high surface areas. Organic-inorganic hybrid materials meet these criteria by exploiting the physical robustness of porous inorganic materials and the chemical functionality of organic materials. While amorphous oxides are widely used industrially as inorganic supports, disordered pore structures make them difficult to characterize. Ordered-mesoporous-silica (OMS), such as SBA-15, that have ordered pores structures simplify characterization and are useful models for studying hybrid materials. Dendrimers, once appropriately functionalized, have high densities of uniformly distributed functional groups. In this thesis, melamine-based dendrimer/SBA-15 hybrids were synthesized and characterized using a wide range of analytical techniques. This thesis shows that the porosity can be independently altered by varying 1) the dendrimer generation, 2) the linker molecule, and 3) the surface amine loading. Cu(II) sequestration results demonstrate that the peripheral functional groups of the dendrimer are readily accessible for binding. This thesis also describes preliminary work toward preparing an enantioselective catalyst using L-proline supported on OMS. This work includes the synthesis and testing of three dendrimer-like proline derivatives. Future work in this area is outlined and will include synthesizing catalysts based on the dendrimer hybrid system previously described. Solution dendrimer syntheses will also be performed to create solution-based catalysts.
23

Dendrimer-encapsulated metal nanoparticle thin films on solid surfaces: preparation, characterization, and applications to electrocatalysis

Ye, Heechang 15 May 2009 (has links)
Dendrimer-encapsulated nanoparticles (DENs) were prepared, characterized, and immobilized on solid surfaces. The resulting films were applied as electrocatalysts for the oxygen reduction reaction (ORR). First, the synthesis, physical and chemical properties, and stability of Pd DENs prepared within poly(amidoamine) (PAMAM) dendrimers were studied in aqueous solution. In this part of the study, the following new findings were reported: (1) the maximum Pd ion loading in the dendrimer was correlated to the number of interior amines available for complexation; (2) Pd DENs could be synthesized within amine-terminated Pd DENs by controlling the solution pH; (3) the oxidative stability of Pd DENs was significantly improved by removing solution-phase impurities; (4) exposure to hydrogen gas reversibly converts partially oxidized Pd DENs back to the zerovalent state. Second, Pt and Pd DENs were prepared using amine-terminated PAMAM dendrimers, and then the free amine groups on the periphery were used to immobilize Pt and Pd DENs onto Au surfaces via an intermediate self-assembled monolayer. The resulting DEN films were more robust and had higher coverages of DENs compared to the DEN films prepared via physisorption. Third, Pt DENs were prepared and immobilized on glassy carbon electrodes using an electrochemical coupling method. The resulting films were electrochemically active for the ORR. These electrocatalytic monolayers were also robust, surviving up to 50 consecutive electrochemical scans for ORR and sonication in acid solution with no significant change in activity. Finally, PtPd bimetallic nanoparticles containing an average of 180 atoms (~1.8 nm in diameter) and composed of seven different Pt:Pd ratios were prepared within sixth-generation, hydroxyl-terminated PAMAM dendrimers. Transmission electron microscopy and single-particle energy dispersive spectroscopy confirmed the sizes and compositions of the particles. These DENs were immobilized on glassy carbon electrodes, and their electrocatalytic properties were evaluated as a function of composition using cyclic voltammetry and rotating disk voltammetry. The results showed that the maximum rate for the ORR occurs at a Pt:Pd ratio of 5:1, which corresponds to a relative mass activity enhancement of 2.5 compared to otherwise identical monometallic Pt nanoparticles.
24

Dendrimer-encapsulated metal nanoparticle thin films on solid surfaces: preparation, characterization, and applications to electrocatalysis

Ye, Heechang 15 May 2009 (has links)
Dendrimer-encapsulated nanoparticles (DENs) were prepared, characterized, and immobilized on solid surfaces. The resulting films were applied as electrocatalysts for the oxygen reduction reaction (ORR). First, the synthesis, physical and chemical properties, and stability of Pd DENs prepared within poly(amidoamine) (PAMAM) dendrimers were studied in aqueous solution. In this part of the study, the following new findings were reported: (1) the maximum Pd ion loading in the dendrimer was correlated to the number of interior amines available for complexation; (2) Pd DENs could be synthesized within amine-terminated Pd DENs by controlling the solution pH; (3) the oxidative stability of Pd DENs was significantly improved by removing solution-phase impurities; (4) exposure to hydrogen gas reversibly converts partially oxidized Pd DENs back to the zerovalent state. Second, Pt and Pd DENs were prepared using amine-terminated PAMAM dendrimers, and then the free amine groups on the periphery were used to immobilize Pt and Pd DENs onto Au surfaces via an intermediate self-assembled monolayer. The resulting DEN films were more robust and had higher coverages of DENs compared to the DEN films prepared via physisorption. Third, Pt DENs were prepared and immobilized on glassy carbon electrodes using an electrochemical coupling method. The resulting films were electrochemically active for the ORR. These electrocatalytic monolayers were also robust, surviving up to 50 consecutive electrochemical scans for ORR and sonication in acid solution with no significant change in activity. Finally, PtPd bimetallic nanoparticles containing an average of 180 atoms (~1.8 nm in diameter) and composed of seven different Pt:Pd ratios were prepared within sixth-generation, hydroxyl-terminated PAMAM dendrimers. Transmission electron microscopy and single-particle energy dispersive spectroscopy confirmed the sizes and compositions of the particles. These DENs were immobilized on glassy carbon electrodes, and their electrocatalytic properties were evaluated as a function of composition using cyclic voltammetry and rotating disk voltammetry. The results showed that the maximum rate for the ORR occurs at a Pt:Pd ratio of 5:1, which corresponds to a relative mass activity enhancement of 2.5 compared to otherwise identical monometallic Pt nanoparticles.
25

Kilogram Scale Synthesis of a Triazine-based Dendrimer and the Development of a General Strategy for the Installation of Pharmacophores to Yield Potential Drug Delivery Agents

Venditto, Vincent J. 2009 December 1900 (has links)
Diverse dendrimer peripheries are often produced through convergent synthesis with multiple protection-deprotection steps. Achieving such diversity while maintaining monodispersity, has previously proven problematic. Interception of an electrophilic poly(monochlorotriazine) dendrimer with a molecule of interest bearing a reactive, nucleophilic group presents an efficient method to achieve large quantities of dendrimers with biologically relevant peripheries. Kilogram-scale synthesis of a triazine-based dendrimer relies on reaction of the dichlorotriazine monomer with the amine terminated dendrimer to afford a poly(monochlorotriazine) dendrimer. Normally, the dendrimer is then reacted with piperidine, an inexpensive “cap” due to its chemically inert nature after reaction. The dendrimer then undergoes a global deprotection to afford an amine-terminated dendrimer. Subsequent iterations with the dichlorotriazine monomer affords higher generation architectures. Intercepting the poly(monochlorotriazine) dendrimer with biologically relevant molecules containing reactive amines enables the development of a drug delivery vehicle. Desferrioxamine B, an iron chelate, and camptothecin, and anticancer drug, are two clinically approved drugs of interest investigated for macromolecular drug delivery. Upon acylation of each drug with BOC-isonipecotic acid, substitution on the dendrimer may occur with varying levels of success depending on the drug in question. Upon successful substitution to afford the desired product,biological studies may be performed. Each synthetic approach will be discussed along with alternative routes leading to this general strategy.
26

Dendritic and linear polymers for separations

Gonzalez, Sergio Omar 17 February 2005 (has links)
Most new fields in chemistry usually began as a curiosity by the researchers, followed by an intrinsic interest in basic biological, physical and chemical properties of reactions, interactions, structural features, and response to external stimuli by chemical elements and/or chemical compounds. If the “curiosity” has appealing bio-physico-chemical properties this trend is followed by studies on the possible applications of such new fields. As a result, is it expected that these curiosities develop or give insights into new technologies. The development of the field of dendrimer chemistry is no different. In fact, dendrimer chemistry illustrates this trend fittingly. The research in this dissertation follows a similar trend. First, the synthesis of a melamine-based dendrimer is achieved. The synthesis illustrates the concept of using triazines as building blocks in dendrimer synthesis. The characterization of this molecule was followed by a basic inquiry of the properties that were unique relative to its composition. This dendrimer is compared against a small library of similar dendrimers in a structure-activity relationship (SAR) study. From the basic concept of an SAR, we moved toward more applied studies of these molecules. The grafting of organic molecules onto inorganic supports has had influences in the fields of catalysis, separations, and sensors. We developed protocols for the grafting of melamine-based molecules onto hydroxyl rich surfaces. After extensive characterization using solution and surface analyses, we tested the sequestration abilities of these new materials toward the separation of molecules of environmental importance from water. Following the data collected in these experiments, we moved toward a different type of applied technology. The use of linear polymers for separations instead of dendrimers is more attractive from an engineering perspective. We then used what was learned from the study of the separations performed by dendrimers and applied it to the design of linear polymers. We take advantage of a latent solid phase response to external stimuli to remove the herbicide atrazine from aqueous solution to the limit of detection.
27

Methods for the syntheses of compositionally diverse dendrimers

Steffensen, Mackay Bagley 01 November 2005 (has links)
Dendrimers are a unique class of macromolecules that present perfect branching on a molecular scale. The pattern of branching at the atomic scale is compared to the branching of trees, from whence dendrimers get their name. Dendrimers have been attractive synthetic targets for the past twenty years. The methods and building blocks used in the synthesis of dendrimers vary, but molecules of this class of polymeric materials all possess symmetrical branching emanating from the core. At each branch point the number of groups increases exponentially. Efforts directed toward the synthesis of dendrimers presenting multiple functional groups at the surface and within the dendrimer structure are described. Methods are described which provide access to dendrimers in a one-pot per generation fashion, with triazines as the common moiety. Chemoselective routes utilize the temperature dependant substitution of cyanuric chloride to construct dendrimers, obviating the use of protected monomers or the need to manipulate functional groups during the synthesis. These methods are atom economical, as the only by-products are HCl and a base to scavenge it. The methods are efficient, with typical isolated yields of product in the middle to high ninety percent range, often on a multi-gram scale. Methods are described for conducting three separate reactions in a single pot. Specific emphasis is placed on structural control of the interior and surface groups of the dendrimers. The synthesis of a G3 dendrimer of layered composition is described. The use of a different difunctional linkage group for each generation of dendrimer growth produced a G3 dendrimer with layered composition without the use of protecting groups or functional group interconversions. A G3 dendrimer was synthesized presenting five different functionalities at the periphery on a 10 gram scale, resulting in approximately 70% overall yield. The peripheral groups are composed of orthogonal functionality, which can be independently and selectively unmasked or manipulated in the presence of the other functionality. The syntheses of dendrimers incorporating the short linker hydrazine produce materials with interesting physical properties as well as a low ratio of carbon to nitrogen. The use of dendrimers in the construction of novel macromolecular constructs is also described.
28

Synthesis and electrochemical characterization of highly monodisperse dendrimer-templated monolayer protected clusters

Kim, Yong-Gu 12 April 2006 (has links)
We described the synthesis of multilayer organic thin films prepared by sequential vapor-phase coupling of monomers. The reactions were carried out at room temperature and atmospheric pressure. Films prepared using up to six sequential coupling reactions are reported. Homobifunctionalized monomers, such as hexamethylenediamine, react primarily via a single endgroup rather than cross coupling to the reactive surface via both reactive groups. We synthesized bifunctionalized polyamidoamine (PAMAM) dendrimers having both quaternary ammonium groups and primary amines on their periphery were prepared. The high positive charge on the surface of these dendrimers prevents agglomeration, and the unquanternized amine groups provide a reactive handle for immobilizing the dendrimer-encapsulated nanoparticles onto surfaces. We prepared highly monodisperse, 1-2 nm diameter Au nanoparticles using bifunctionalized PAMAM dendrimers as templates. The synthesis is carried out in water, takes less than 30 min, and requires no subsequent purification. The high monodispersity is a function of the template synthesis, which avoids size variations arising from random nucleation and growth phenomena, and the use of magic number equivalent ratios of AuCl4-/dendrimer. We investigated the electrochemical properties of Au, Pd and PdAu monolayer-protected clusters (MPCs), prepared by dendrimer-templating and subsequent extraction, are described. Purification of the extracted Au, Pd and PdAu nanoparticles was not required to obtain well-defined differential pulse voltammetry peaks arising from quantized double-layer charging. The calculated sizes of the nanoparticles were essentially identical to those determined from the electrochemical data. The capacitance of the particles was independent of the composition of core metal.
29

Synthesis and application of melamine-based dendrimer/sba-15 hybrid materials

Lunn, Jonathan David 17 September 2007 (has links)
Porous inorganic materials that can be used in applications such as catalysis and separations have been intensely studied due to their potential stability, ease of recovery and high surface areas. Organic-inorganic hybrid materials meet these criteria by exploiting the physical robustness of porous inorganic materials and the chemical functionality of organic materials. While amorphous oxides are widely used industrially as inorganic supports, disordered pore structures make them difficult to characterize. Ordered-mesoporous-silica (OMS), such as SBA-15, that have ordered pores structures simplify characterization and are useful models for studying hybrid materials. Dendrimers, once appropriately functionalized, have high densities of uniformly distributed functional groups. In this thesis, melamine-based dendrimer/SBA-15 hybrids were synthesized and characterized using a wide range of analytical techniques. This thesis shows that the porosity can be independently altered by varying 1) the dendrimer generation, 2) the linker molecule, and 3) the surface amine loading. Cu(II) sequestration results demonstrate that the peripheral functional groups of the dendrimer are readily accessible for binding. This thesis also describes preliminary work toward preparing an enantioselective catalyst using L-proline supported on OMS. This work includes the synthesis and testing of three dendrimer-like proline derivatives. Future work in this area is outlined and will include synthesizing catalysts based on the dendrimer hybrid system previously described. Solution dendrimer syntheses will also be performed to create solution-based catalysts.
30

Molecular Simulation to Investigate Energy Funneling of a Dendritic Molecule - L5AZO

Chen, Cheng-bin 22 July 2008 (has links)
none

Page generated in 0.0297 seconds