• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mountain Pine Beetle Fecundity and Offspring Size Differ Among Lodgepole Pine and Whitebark Pine Hosts

Gross, Donovan 01 December 2008 (has links)
Whitebark pine (Pinus albicaulis Engelmann) is a treeline species in the central Rocky Mountains. Its occupation of high elevations previously protected whitebark pine from long-term mountain pine beetle outbreaks. The mountain pine beetle, however, is currently reaching outbreaks of record magnitude in high-elevation whitebark pine. We used a factorial laboratory experiment to compare mountain pine beetle (Dendroctonus ponderosae Hopkins) life history characteristics between a typical host, lodgepole pine (Pinus contorta Engelmann), and whitebark pine. We tested the effects of natal host and brood host on beetle fecundity, offspring size, and brood sex-ratio. We reared mountain pine beetles from whitebark pine and from lodgepole pine, and infested half of them into their natal host and half into the other host. Fecundity was greater overall in lodgepole pine brood hosts. Among lodgepole brood hosts, beetles from whitebark pine had greater fecundity. Fecundity was also significantly related to phloem thickness, which was greater in lodgepole pine. Offspring were larger from whitebark brood hosts than from lodgepole, regardless of their parents’ natal host. Finally, sex-ratio was closer to 1:1 in lodgepole than in whitebark brood hosts. We conclude that host species affects life history of mountain pine beetle with consequences for individual beetle fitness.
2

Application of continuous wavelet analysis to hyperspectral data for the characterization of vegetation

Cheng, Tao Unknown Date
No description available.
3

Patterns and Processes in Forest Insect Population Dynamics

Hughes, Josie 13 December 2012 (has links)
This dissertation is concerned with effects dispersal and forest structure on forest insect population dynamics, and with identifying generating processes by comparing observed patterns to model predictions. In chapter 2, we investigated effects of changing forest landscape patterns on integro-difference models of host-parasitoid population dynamics. We demonstrated that removing habitat can increase herbivore density when herbivores don't disperse far, and parasitoids disperse further, due to differences in dispersal success between trophic levels. This is a novel potential explanation for why forest fragmentation increases the duration of forest tent caterpillar outbreaks. To better understand spatial model behaviour, we proposed a new local variation of the dispersal success approximation. The approximation successfully predicts effects of habitat loss and fragmentation on realistically complex landscapes, except when outbreak cycle amplitude is very large. Local dispersal success is useful in part because parameters can be estimated from widely available habitat data. In chapter 3, we investigated how well a discretized integro-difference model of mountain pine beetle population dynamics predicted the occurrence of new infestations in British Columbia. We found that a model with a large dispersal kernel, and high emigration from new, low severity infestations yielded the best predictions. However, we do not believe this to be convincing evidence that many beetles disperse from new, low severity infestations. Rather, we argued that differences in habitat quality, detection errors, and Moran effects can all confound dispersal patterns, making it difficult to infer dispersal parameters from observed infestation patterns. Nonetheless, predicting infestation risk is useful, and large kernels improve predictions. In chapter 4, we used generalized linear mixed models to characterize spatial and temporal variation in the propensity of jack pine trees to produce pollen cones, and account for confounding effects on the relationship between pollen cone production and previous defoliation by jack pine budworm. We found effects of stand age, and synchronous variation in pollen cone production among years. Accounting for background patterns in pollen cone production clarified that pollen cone production declines in with previous defoliation, as expected.
4

Patterns and Processes in Forest Insect Population Dynamics

Hughes, Josie 13 December 2012 (has links)
This dissertation is concerned with effects dispersal and forest structure on forest insect population dynamics, and with identifying generating processes by comparing observed patterns to model predictions. In chapter 2, we investigated effects of changing forest landscape patterns on integro-difference models of host-parasitoid population dynamics. We demonstrated that removing habitat can increase herbivore density when herbivores don't disperse far, and parasitoids disperse further, due to differences in dispersal success between trophic levels. This is a novel potential explanation for why forest fragmentation increases the duration of forest tent caterpillar outbreaks. To better understand spatial model behaviour, we proposed a new local variation of the dispersal success approximation. The approximation successfully predicts effects of habitat loss and fragmentation on realistically complex landscapes, except when outbreak cycle amplitude is very large. Local dispersal success is useful in part because parameters can be estimated from widely available habitat data. In chapter 3, we investigated how well a discretized integro-difference model of mountain pine beetle population dynamics predicted the occurrence of new infestations in British Columbia. We found that a model with a large dispersal kernel, and high emigration from new, low severity infestations yielded the best predictions. However, we do not believe this to be convincing evidence that many beetles disperse from new, low severity infestations. Rather, we argued that differences in habitat quality, detection errors, and Moran effects can all confound dispersal patterns, making it difficult to infer dispersal parameters from observed infestation patterns. Nonetheless, predicting infestation risk is useful, and large kernels improve predictions. In chapter 4, we used generalized linear mixed models to characterize spatial and temporal variation in the propensity of jack pine trees to produce pollen cones, and account for confounding effects on the relationship between pollen cone production and previous defoliation by jack pine budworm. We found effects of stand age, and synchronous variation in pollen cone production among years. Accounting for background patterns in pollen cone production clarified that pollen cone production declines in with previous defoliation, as expected.

Page generated in 0.0709 seconds