• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Overstory and understory dynamics of whitebark pine (Pinus albicaulis) ecosystems of northwestern British Columbia

Clason, Alana Unknown Date
No description available.
2

Overstory and understory dynamics of whitebark pine (Pinus albicaulis) ecosystems of northwestern British Columbia

Clason, Alana 11 1900 (has links)
Whitebark pine (Pinus albicaulis) is declining across its range due to disturbances such as mountain pine beetle and white pine blister rust. In this thesis, I assess the response and vulnerability of whitebark pine ecosystems to multiple stressors and disturbances at the northern edge of P.albicaulis range in the Coastal Mountains of British Columbia, Canada. Both the compositional change over time of overstory and understory communities as well as vegetation spatial patterns suggest that different sites or ecosystem types housing whitebark pine may differ in their response to disturbance and stress. Surveys conducted ~ 20 years apart indicate that overstory community change differed between site types following the decline of P. albicaulis over time, while the understory did not change significantly. The spatial pattern of overstory species and understory communities also indicates that site type may be important in determining forest change under ongoing disturbance to whitebark pine. / Forest Biology and Management
3

Mountain Pine Beetle Fecundity and Offspring Size Differ Among Lodgepole Pine and Whitebark Pine Hosts

Gross, Donovan 01 December 2008 (has links)
Whitebark pine (Pinus albicaulis Engelmann) is a treeline species in the central Rocky Mountains. Its occupation of high elevations previously protected whitebark pine from long-term mountain pine beetle outbreaks. The mountain pine beetle, however, is currently reaching outbreaks of record magnitude in high-elevation whitebark pine. We used a factorial laboratory experiment to compare mountain pine beetle (Dendroctonus ponderosae Hopkins) life history characteristics between a typical host, lodgepole pine (Pinus contorta Engelmann), and whitebark pine. We tested the effects of natal host and brood host on beetle fecundity, offspring size, and brood sex-ratio. We reared mountain pine beetles from whitebark pine and from lodgepole pine, and infested half of them into their natal host and half into the other host. Fecundity was greater overall in lodgepole pine brood hosts. Among lodgepole brood hosts, beetles from whitebark pine had greater fecundity. Fecundity was also significantly related to phloem thickness, which was greater in lodgepole pine. Offspring were larger from whitebark brood hosts than from lodgepole, regardless of their parents’ natal host. Finally, sex-ratio was closer to 1:1 in lodgepole than in whitebark brood hosts. We conclude that host species affects life history of mountain pine beetle with consequences for individual beetle fitness.
4

Population Structure and Biophysical Density Correlates of Whitebark Pine (Pinus albicaulis) at Two Treelines in the Northern Rocky Mountains

Slyder, Jacob Brake 05 June 2012 (has links)
This study analyzes the structure and biophysical correlates of density of two whitebark pine (Pinus albicaulis) populations in the northern Rocky Mountains. Whitebark pine is a keystone species and an important component of treeline ecosystem dynamics; however, subalpine populations have declined nearly rangewide in recent decades. Though declines in subalpine forests have been well documented in the literature, few studies have assessed population structure and habitat requirements at treeline. Various disturbances have combined to impact whitebark pine populations across its range, but the primary threat at treeline sites in the northern Rocky Mountains is white pine blister rust, caused by the exotic fungal pathogen Cronartium ribicola. In this study, I aim to: 1) assess population structure and regeneration within two geographically different treelines experiencing contrasting levels of infection, and 2) examine associations among several biophysical variables and whitebark pine density to better understand treeline habitat variability and regeneration patterns. I used density-diameter curves and non-parametric Kruskal-Wallis tests to compare population structure between sites, and developed generalized linear mixed models to assess correlations between whitebark pine density and biophysical site variables. The results demonstrate that despite very different ecosystems and blister rust infection rates, our two study sites have similar population structure. Our model results highlight marked differences between populations in terms of biophysical correlates of density. While correlations are similar within site, seedlings and saplings have stronger correlations with biophysical variables than established trees. / Master of Science
5

Geospatial Variation of an Invasive Forest Disease and the Effects on Treeline Dynamics in the Rocky Mountains

Smith-McKenna, Emily Katherine 22 November 2013 (has links)
Whitebark pine is an important keystone and foundation species in western North American mountain ranges, and facilitates tree island development in Rocky Mountain treelines. The manifestation of white pine blister rust in the cold and dry treelines of the Rockies, and the subsequent infection and mortality of whitebark pines raises questions as to how these extreme environments harbor the invasive disease, and what the consequences may be for treeline dynamics. This dissertation research comprises three studies that investigate abiotic factors influential for blister rust infection in treeline whitebark pines, how disease coupled with changing climate may affect whitebark pine treeline dynamics, and the connection between treeline spatial patterns and disease. The first study examined the spatial variation of blister rust infection in two whitebark pine treeline communities, and potential topographic correlates. Using geospatial and field approaches to generate high resolution terrain models of treeline landscapes, microtopography associated with solar radiation and moisture were found most influential to blister rust infection in treeline whitebark pines. Using field-based observations from sampled treeline communities, the second study developed an agent-based model to examine the effects of disease and climate on treeline pattern and process. Treeline dynamics were simulated under five hypothetical scenarios to assess changes in tree spatial patterns and populations. Blister rust-induced loss of whitebark pines resulted in a decline of facilitative processes, and an overall negative treeline response to disease—despite the beneficial effects of climate amelioration. The objective of the third study was to explore whether spatial patterns of tree proximity, size, and growth infer disease patterns. Comparing spatial patterns of tree characteristics between diseased and undiseased treeline communities, I found that trees growing near trees with larger stem diameters, and larger tree islands, tended to have more blister rust cankers, and displayed clustered spatial patterns. Undiseased treeline patterns revealed near neighbors smaller in stem diameter and tree island size, and were randomly dispersed. Blister rust diseased whitebark pines reveal spatial autocorrelation, despite the complex blister rust disease life cycle. Overall, findings from this dissertation reveal the implications of invasive disease on sensitive treeline ecotones dependent on a keystone species. / Ph. D.

Page generated in 0.0579 seconds