• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 122
  • 12
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 154
  • 154
  • 36
  • 26
  • 24
  • 22
  • 21
  • 20
  • 18
  • 16
  • 14
  • 14
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
81

Nonadiabatic molecular dynamics in time-dependent density functional theory with applications to nanoscale materials /

Craig, Colleen F. January 2006 (has links)
Thesis (Ph. D.)--University of Washington, 2006. / Vita. Includes bibliographical references (p. 89-98).
82

Simulations of platinum growth on Pt(111) using density functional theory and kinetic monte carlo simulations /

Sun, Grace Siswanto. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (p. 63-66).
83

Density functional theory investigations of molecules on surfaces : from nano-electronics to catalysis

Garrido Torres, José A. January 2017 (has links)
In this thesis, a wide breadth of topics related to the field of surface science are addressed using density functional theory (DFT). Specifically, five studies with relevance to molecular electronics and heterogeneous catalysis are presented, with a particular focus on interadsorbate interactions, reactivity and characterisation of molecules on transition metal surfaces. The first part of this work focuses on giving strong theoretical underpinning to the atomic-scale observations provided by scanning tunnelling microscopy (STM) experiments conducted by my group colleagues. The theoretical calculations presented here provide support to the experimental evidences but also serve to unravel information that is inaccessible from the experiments. On the one hand, the variety of results obtained in this thesis using standard DFT methods serve to highlight the capabilities of the computationally low-demanding methods for modelling processes occurring on metal surfaces. On the other hand, we notice that these workhorse methods in DFT have inherent limitations for providing an accurate description of some properties, in particular binding energies. This, further improvements in the level of theory are necessary for advancing the computational accuracy of standard DFT methods in materials science. The second part of this thesis is devoted to highlight the high level of accuracy obtained by the new theoretical approaches in the field of materials science. Due to the recent implementation of new algorithms combined with the increasing computer power that is available to the scientific community, these sophisticated methods are becoming more accessible for modelling solid-state systems. Here, the recent implementation of the random-phase approximation (RPA) for solids is employed to perform to benchmark study on the adsorption of benzene on different close-packed transition metal surfaces. The development of new theoretical tools is also essential to improve our predictive capabilities in surface science. A novel approach to correct vibrational intensities by including anharmonicities using density functional perturbation theory (DFPT) is proposed. The new method is tested for the adsorption of different organic molecules on various transition metal surfaces. The results obtained by this implementation demonstrate excellent improvements for predicting accurate spectra of molecules on surfaces.
84

Studies towards the development of novel multidentate ligands

Magqi, Nceba January 2007 (has links)
In this study, attention has been given to the design and synthesis of novel multidentate ligands for use in the construction of ruthenium-based metathesis catalysts, and their chelating potential has been explored by computer modelling at the Density Functional Theory (DFT) level. Both Kemp’s triacid (1,3,5-trimethyl-1,3,5-cyclohexanetricarboxylic acid) and D-(+)-camphor have been investigated as molecular scaffolds for the development of such ligands. However selective elaboration of the functional groups in Kemp’s triacid proved difficult to achieve, and the research has focused on the development of camphor derivatives. The synthesis of the camphor-based ligands has involved C-8 functionalisation and ring-opening of the bicyclic system to afford tridentate products. The formation of 9-iodocamphorquinone bis(ethylene ketal) together with the desired product, the 8-iodo isomer, has been confirmed by single crystal X-ray analysis of both compounds. Formation of the 9-iodo analogue has provided new insights into the intramolecular rearrangement of camphor skeleton, and the mechanistic implications have been assessed by coset analysis. Attempts to effect nucleophilic displacement of the 8-halogeno groups by nucleophilic donor moieties proved unexpectedly difficult and, coupled with the susceptibility of the carbonyl groups to nucleophilic attack, has led to the formation of novel tricyclic products, viz., 1,6-dimethyl-3-(2-pyridylamino)-4-oxatricyclo[4.3.0.0[superscript 3,7]]-2-nonanone and 6,7-dimethyl-3-(2-pyridylamino)-4-oxatricyclo -[4.3.0.0[superscript 3,7]]-2-nonanone. However the diphenylphosphine group was successfully introduced at C-8 and oxidative ring-opening of the camphor skeleton has afforded the tridentate ligands, 2-(diphenylphosphinoylmethyl)-1,2-dimethyl-1,3-cyclopentanedicarboxylic acid and 2-(diphenylphosphinoylmethyl)-1,3-bis(hydroxymethyl)1,2-dimethylcyclopentane. One- and two-dimensional NMR and, where appropriate, high-resolution MS methods have been used to characterise the products. Three [superscript 13]C NMR chemical shift prediction programmes, viz., ChemWindow and the MODGRAPH neural network and HOSE (Hierachially Ordered Spherical description of Environment), have been applied to representative compounds to assess their efficacy. While the predicted shifts correlated reasonably well with the experimental data, they proved to be insufficiently accurate to differentiate the isomeric systems examined.
85

Semiempirical methods for excited states of nanomaterials

Cho, Yeongsu January 2021 (has links)
Density functional theory (DFT) provides an affordable computational tool to understand electronic structure of various molecules and solids. However, the use of DFT is still challenging to investigate nanomaterials of intermediate size that are too small to assume translational symmetry and too large to be considered as molecules. This thesis focuses on developing cost-effective but accurate computational methods for nanomaterials and using the methods to rationalize and predict experimental behaviors. A notable difference of a nanomaterial from its bulk counterpart is that its properties are exceptionally sensitive to the dielectric environment, requiring a proper treatment of the surrounding dielectrics for an accurate understanding. The consequences of heterogeneous dielectric screening on transition metal dichalcogenides are studied by developing a new theory based on classical electrostatics, which closely reproduced the band gaps and optical gaps calculated by the ab initio GW approximation and the Bethe-Salpeter equation (BSE). The relative insensitivity of the first optical transition energy observed by experiments was explained for the first time in terms of the cancellation effect of changes of the band gap and the exciton binding energy. The theory of heterogeneous dielectric environments is further developed to be used in an atomistic calculation of layered hybrid organic-inorganic lead halide perovskites via a tight-binding GW-BSE method. The binding energies of trions and biexcitons were also calculated using the stochastic variational method to give spectrum peak energies that show a good agreement with reported experimental measurements. Lastly, the tight-binding GW-BSE method is generalized into an atomistic, semiempirical approach to calculate the electronic structure and optical spectra of arbitrary nanomaterials, termed semiempirical GW (sGW) and BSE (sBSE).
86

Parallelized multigrid applied to modeling molecular electronics

Peacock, Darren. January 2007 (has links)
No description available.
87

Theoretical Studies of Unconventional Superconductivity in Materials with Strong Electronic Correlations

Karp, Jonathan Judah January 2022 (has links)
We use a combination of Density Functional Theory and Dynamical Mean Field Theory (DFT+DMFT) to study electronic correlations in unconventional superconductors, with a focus on nickelate analogs of cuprate superconductors. We study the infinite layer nickelate superconductor NdNiO₂ in parallel with the isostructural CaCuO₂. Our results point to superconductivity in the nickelate being cupratelike, with correlations dominated by a hybrid Ni-𝑑_{𝑥²-𝑦²} and O-𝑝 band, and with the extra bands not contributing substantially to the superconducting state. We find that the infinite layer nickelate NdNiO₂ and the trilayer nickelate Pr₄Ni₃O₈ are virtually identical in terms of correlation physics when compared at the same chemical doping, despite the differences in Fermiology, indicating that the number of layers can stand in for chemical doping for some properties related to electronic correlations. We find that as opposed to in narrow window DFT+DMFT, in wide window DFT+DMFT the choice of downfolding procedure leads to very different results. This is an important ambiguity in the method that must be resolved or the method is incomplete by itself. We also study Sr₂MoO₄ in parallel with the Hund's superconductor Sr₂RuO₄, and find that Sr₂MoO₄ is a particle-hole dual of Sr₂RuO₄ but without the van Hove singularity at the Fermi level, which disentangles the influence of the van Hove singularity from Hund's physics. We show that Sr₂MoO₄ has a characteristic Hund's peak on the occupied of the spectral function, indicating that the peak should be observable by photoemission experiments.
88

Analytical determination of autocorrelation and noise power density spectrum of randomly modulated pulse width square waves

Park, Hen Suh January 1966 (has links)
The Wiener theory of the minimum mean square error ·criterion is well furnished by knowing the autocorrelation function of the input to the linear system. This input signal is generally an additive mixture of a piecewise continuous message and a noise. The problem considered in this paper is the determination of the autocorrelation function and also their power density spectrum of the noise component for the random base and height modulated square wave whose leading edges are periodic functions of time. We note that the adopted probability density function for heights of random square wave have Gamma-Distribution Density Function. In addition to this distribution function, we consider the rectangular and Beta-density function on the base of square waves. In fact, the leading edges of most periodic-random base function can be simply described by using the rectangular and Beta-Density function. Another matter under consideration is the visualization of the variations noise power density spectrum immersed in the masked signal (mixtured signal) with respect to the variance σ² and s² of Gamma and Beta-distribution, respectively. / M.S.
89

A DFT study of the catalytic hydrocyanation of ethylene with nickel complexes

Heydenrych, Greta 12 1900 (has links)
Dissertation (PhD)--University of Stellenbosch, 2005. / ENGLISH ABSTRACT: DFT calculations employing the B3LYP functional were done to investigate the mechanism for the Ni-catalyzed hydrocyanation of ethylene as proposed by Tolman. Although this reaction is an important industrial process, its mechanism has never been studied computationally, apart from calculations pertaining to ligand tailoring. This study comprises a detailed configurational analysis of each step of the reaction cycle, charge decomposition analysis of pertinent species and analysis of the activation barriers involved at each step. A model ligand, PH3, is employed, due to its electronic similarity to the experimental ligand most widely used, P(O-o-tolyl)3, and its small size, which makes it amenable for calculations at this level. It was found that oxidative addition of HCN to the precursor complex (ethylene)NiL2 (L=PH3) can take place in one step and that it is the rate-determining step in the gas phase. The resulting adduct has H+ (which becomes a hydride) and CN- coordinated in the cis configuration. Ligand dissociation yields three configurations of (ethylene)-NiHCNL, of which only two can participate in the catalytic cycle. It is shown that this is because migration-insertion of ethylene into the Ni-H bond takes place before, or concomitant with, association of a second ethylene molecule, contrary to expectation. This path therefore requires that ethylene and hydrogen are coordinated in the cis configuration, something only possible for two of the three isomers of (ethylene)NiHCNL. The calculations support the mechanism of associative reductive elimination and shows that elimination can only take place if the ethyl and cyanide groups are in the cis configuration. Analysis of the energetic profile of the reaction shows that entropy effects play a very important role in the propagation of the cycle, at least in the gas phase. Preliminary work on the effect of Lewis acids the catalytic cycle is presented, with structural and energetic analysis. An important general conclusion is that the standard way of representing the energy profile of reactions where intermolecular transitions (as opposed to intramolecular transitions only) take place can be misleading. It will be argued that the implicit assumption that two species which are minimum energy structures on distinct potential energy surfaces will also be an energy minimum on one potential energy surface skews the energy profile of the reaction. The consequence of this is that care must be taken in representing energy profiles for reactions where more than one distinct species participates. / AFRIKAANSE OPSOMMING: Die meganisme, soos deur Tolman voorgestel, van die Ni-gekataliseerde hidrosianering van etileen word ondersoek met behulp van Kohn-Sham elektrondigtheidsteorie (density finctional theory, DFT) berekeninge waarin die B3LYP-funksionaal gebruik word. Alhoewel die reaksie ‘n belangrike proses is in die industrie, is die volle me-ganisme nog nooit met behulp van berekeninge bestudeer nie. Daar is egter wel al werk gedoen aangaande sekere aspekte van die reaksie, byvoorbeeld ligandontwerp. Hierdie studie behels ‘n noukeurige konfigurasionele analise van elke stap van die reaksie-siklus, ladingsverdelingsanalise (charge decomposition analysis, CDA) van sekere belangrike spesies asook die analise van die energiestappe betrokke by elke stap. Fosfien is gekies as ‘n modelligand, omdat dit elektronies ooreenstem met P(O-o-toliel)3, die ligand wat meestal in eksperimentele werk gebruik is. Die klein grootte van fosfien maak dit ook geskik vir be-rekeninge op hierdie vlak. Daar is bevind dat die oksidatiewe addisie van HCN aan die voorgangerkompleks (etileen)-NiL2 (L=PH3) in een stap kan plaasvind en in die gasfase snelheidsbepalend is. Die adduk (ettileen)NiHCNL2 bevat H+ (wat ‘n hidried word) en CN- in die cis-posisie relatief tot mekaar. Liganddissosiasie lewer drie isomere van (etileen)NiHCNL. Daar is bevind dat slegs twee van dié isomere aan die katalitiese reaksie kan deelneem, omdat die migrasie-inplasing (migration-insertion) van etileen in die Ni-H-binding voor, of saam met, die assosiasie van ‘n tweede etileen-molekule plaasvind. Dit is slegs moontlik indien waterstof en etileen cis teenoor mekaar is, wat geld vir twee van die isomere. Die meganisme van assosiatiewe reduktiewe eliminasie word deur die berekeninge gerugsteun. Voorts blyk dit vanuit die berekeninge dat die etiel- en sianiedgroepe cis teenoor mekaar moet wees voordat reduktiewe eliminasie van propionitriel kan plaasvind. Analise van die energetiese profiel van die reaksie toon dat entropie-effekte ‘n belangrike rol speel in die voortsetting van die reaksie in die gasfase. Die invloed van Lewissure op die katalitiese siklus word, met behulp van strukturele en energetiese analise bespreek. ‘n Belangrike algemene gevolgtrekking is dat die standaardvoorstelling van die energetiese profiel van reaksies waarin intermolekulêre oorgange (teenoor slegs intramolekulêre oorgange) voorkom, misleidend kan wees. Dit word gestel dat die implisiete aanname dat twee spesies wat minumum-energiestrukture verteenwoordig op twee verskillende potensiële energie-oppervlaktes ook ‘n minimum-energiestruktuur voorstel op een potensiële energie-oppervlakte, die energieprofiel skeeftrek. Gevolgtrekkings vanuit hierdie energieprofiele van reaksies waar meer as een onderskeibare spesie deelneem, moet dus met omsigtigheid gemaak word.
90

Time-resolved resonance Raman investigation of selected para-substituted phenylnitrenium ions and the 2-fluorenylnitrenium ionreaction with guanosine

Chan, Pik-ying., 陳碧瑩. January 2005 (has links)
published_or_final_version / abstract / Chemistry / Doctoral / Doctor of Philosophy

Page generated in 0.1047 seconds