• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of halloysite aluminosilicate clay nanotube incorporation into bonding agents on shear bond strength to human dentin

Alkatheeri, Mohammed Saeed January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In adhesive dentistry, obtaining a good bond is a fundamental goal. It has been suggested that filler addition to the adhesives would increase the bonding strength of the adhesive layer. Halloysite aluminosilicate nanotubes (HNTs) are biocompatible, hydrophilic, durable, and have high mechanical strength. These advantages make them good candidates to be used as reinforcing agents for improving the properties of dental adhesives. The objective of this study was to evaluate the effect of incorporating HNTs into a commercial two-step etch-and-rinse adhesive system or one-step self-etch adhesive system on dentin shear bond strength. HNTs were incorporated into the two commercial adhesive systems in 0 wt%, 5 wt%, 10 wt%, and 20 wt%. The commercial control adhesives and the experimental adhesives were used to bond occlusal dentin of 120 extracted human molar teeth and then tested for shear bond strength by a universal testing machine with a semi-circular edge at a crosshead speed of 1.0 mm/min. Debonded specimens were examined under light microscopy to evaluate the fracture pattern. Resin-dentin interface were evaluated under scanning electron microscopy (SEM) after bonding dentin slabs using commercial control adhesives and experimental adhesive that showed numerically highest shear bond strength from each adhesive system. Two-way ANOVA was used to evaluate the effects of adhesive system and nanofiller content on shear bond strength. Pair-wise comparisons between groups were made using Fisher's (LSD) (p < 0.05). For the self-etch adhesive system, only incorporation of 5 wt% showed a significant increase in shear bond strength to dentin compared with the commercial control group. For the etch-and-rinse adhesive system, there was no significant difference in shear bond strength between HNTs filled adhesives groups and the commercial control group. Resin-dentin interface SEM evaluation showed nanotubes infiltrated into dentinal tubules. In conclusion, incorporating the self-etch adhesive system with 5 wt% HNTs increased the bond strength to dentin. Incorporation of up to 10 wt% filler concentration into both the self-etch and the etch-and-rinse adhesive systems did not adversely affect the bond strength to dentin or the handling properties. HNTs can penetrate along with resin tags into dentinal tubules, which could expand the use of their unique properties.
2

Quantitative comparison of nanoleakage among five resin luting agents after aging

Chotiwannaporn, Pavinee, 1980- January 2012 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Potential problems of one-step adhesives have been identified, including water uptake and subsequent plasticization, water-and enzyme-induced nanoleakage, and the presence of voids due to phase-separation or osmosis. Clinically, adhesive failures due to marginal degradation present as retention loss, marginal discoloration, and secondary caries. However, the mechanisms of adhesive interface degradation of self-etching and self-bonding resin luting agents are not fully understood. The objective of the study was to investigate adhesive layer degradation by using a nanoleakage technique with five different resin luting agents. Materials and Methods: Five different resin luting systems, Variolink II, Panavia F2.0, RelyX Unicem, RelyX Unicem2, and Maxcem Elite were evaluated in this study. The 25 dentin specimens were randomly divided into five resin luting agent groups. Flat dentin surfaces were created mid-coronally and were luted with luting agents. Then, each tooth was sectioned occluso-gingivally. The first half of each tooth was used as a control group and the other half was used as the experimental group. The control group was immersed in artificial saliva at 37°C and SEM examination with chemical analysis was performed within 48 hours. In the tested group, all specimens were immersed in artificial saliva at 37°C for 10 days and thermocycled. For the SEM examination, the specimens were immersed in a 50-percent ammoniacal silver nitrate solution for 24 hours.22 SEM was used for observation of silver penetration of the specimens. Three scan lines were selected. For elemental analysis, natural apatite, olivine minerals, and pure silver metal were chosen as standards for Ca, Si and Ag. Data were analyzed using ANOVA with a 5-percent significance level. Results: At the bottom of the hybrid layer, there was no significant difference in silver uptake within the adhesive interface between luting agents (p > 0.05) and there was no significant change in silver uptake within the adhesive interface after thermocycling (aging) (p > 0.05). Conclusion: All resin luting agents exhibited nanoleakage after both 24-hour storage and 10-day storage with thermocycling.

Page generated in 0.1291 seconds