Spelling suggestions: "subject:"Dental bonding -- methods"" "subject:"Dental conding -- methods""
1 |
Effect of halloysite aluminosilicate clay nanotube incorporation into bonding agents on shear bond strength to human dentinAlkatheeri, Mohammed Saeed January 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In adhesive dentistry, obtaining a good bond is a fundamental goal. It has been suggested that filler addition to the adhesives would increase the bonding strength of the adhesive layer. Halloysite aluminosilicate nanotubes (HNTs) are biocompatible, hydrophilic, durable, and have high mechanical strength. These advantages make them good candidates to be used as reinforcing agents for improving the properties of dental adhesives.
The objective of this study was to evaluate the effect of incorporating HNTs into a commercial two-step etch-and-rinse adhesive system or one-step self-etch adhesive system on dentin shear bond strength.
HNTs were incorporated into the two commercial adhesive systems in 0 wt%, 5 wt%, 10 wt%, and 20 wt%. The commercial control adhesives and the experimental adhesives were used to bond occlusal dentin of 120 extracted human molar teeth and then tested for shear bond strength by a universal testing machine with a semi-circular edge at a crosshead speed of 1.0 mm/min. Debonded specimens were examined under light microscopy to evaluate the fracture pattern. Resin-dentin interface were evaluated under scanning electron microscopy (SEM) after bonding dentin slabs using commercial control adhesives and experimental adhesive that showed numerically highest shear bond strength from each adhesive system. Two-way ANOVA was used to evaluate the effects of adhesive system and nanofiller content on shear bond strength. Pair-wise comparisons between groups were made using Fisher's (LSD) (p < 0.05).
For the self-etch adhesive system, only incorporation of 5 wt% showed a significant increase in shear bond strength to dentin compared with the commercial control group. For the etch-and-rinse adhesive system, there was no significant difference in shear bond strength between HNTs filled adhesives groups and the commercial control group. Resin-dentin interface SEM evaluation showed nanotubes infiltrated into dentinal tubules.
In conclusion, incorporating the self-etch adhesive system with 5 wt% HNTs increased the bond strength to dentin. Incorporation of up to 10 wt% filler concentration into both the self-etch and the etch-and-rinse adhesive systems did not adversely affect the bond strength to dentin or the handling properties. HNTs can penetrate along with resin tags into dentinal tubules, which could expand the use of their unique properties.
|
2 |
Effect of surface conditioning methods on repair bond strength of microhybrid resin matrix compositeRajitrangson, Phitakphong, 1982- January 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Repair is an alternative treatment option in many cases to replacement of resin matrix composite restoration. However, aged resin matrix composites have a limited number of carbon-carbon double bonds to adhere to a new layer of rein. Therefore, surface treatments of the aged resin matrix composite surface prior to repairing could improve the repair bond strength.
The objectives of this study were to: 1) To evaluate various surface treatments on
shear bond strength of repair between aged and new microhybrid resin matrix composite, and 2) To assess the influence of applying a silane coupling agent after surface
treatments.
Eighty disk-shaped resin matrix composite specimens were fabricated and
thermocycled 5000 times prior to surface treatment. Specimens were randomly assigned to one of the three surface treatments (n = 20): 1) Airborne abrasion with 50 μm aluminum oxide, 2) Tribochemical silica coating (CoJet), or 3) Er,Cr:YSGG laser and control group (n = 20). Specimens were cleaned with 35-percent phosphoric acid, rinsed, and dried. Each group was assigned into two subgroups (n =10): a) no silanization, and b) with silanization. Adhesive agent was applied and new resin matrix composite was bonded to each conditioned surface. Bond strength was evaluated by shear test. Data were analyzed with a two-way ANOVA model. The interaction between conditioning and silanization was significant(p = 0.0163), indicating that comparisons of silanization must be evaluated for each conditioning method, and that comparisons of conditioning methods must be evaluated separately with and without silanization. Airborne particle abrasion showed significantly
higher repair bond strength than Er,Cr:YSGG laser without silanization (p < 0.0001) and with silanization(p = 0.0002), and higher repair bond strength than the control without silanization (p < 0.00001) and with silanization (p < 0.00001). Airborne particle abrasion
did not have significantly different in repair bond strength than Tribosilica coating without silanization (p = 0.70) or with silanization (p = 0.33). Tribosilica coating had significantly higher repair bond strength than Er,CR:YSGG laser without silanization
(p < 0.0001) and with silanization (p < 0.0001), and significantly higher repair bond strength than control without silanization (p < 0.0001), but not with silanization (p =0.16). Er,CR:YSGG laser and control did not have significantly different repair bond strength without silanization (p = 1.00) or with silanization (p = 0.11). There was no
effect of silanization on repair bond strength overall (p = 0.34) for any of the surface conditioning methods (p = 0.76 for airborne particle abrasion; p = 0.39 for tribosilica coating; p = 1.00 for Er,Cr:YSGG laser, or p = 0.39 for control). Airborne particle abrasion with 50-μm aluminum oxide particle and tribochemical silica coating followed by the application of bonding agent provided the highest shear bond strength values, suggesting that they might be adequate methods to improve the quality of the repairs of resin-matrix composites.
|
Page generated in 0.0771 seconds