• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effect of surface treatments on microtensile bond strength of repaired aged silorane resin composite

Palasuk, Jadesada January 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Background: A silorane based resin composite, Filtek LS restorative, has been introduced to overcome the polymerization shrinkage of the methacrylate based resin composite. The repair of resin composite may hold clinical advantages. Currently, there is no available information regarding the repair potential of silorane resin composite with either silorane or methacrylate based resin composite. Objectives: The purpose of this study was to compare the repaired microtensile bond strength of aged silorane resin composite using different surface treatments and either silorane or methacrylate based resin composite. Methods: One hundred and eight silorane resin composite blocks (Filtek LS) were fabricated and aged by thermocycling between 8oC and 48oC (5000 cycles). A control (solid resin composite) and four surface treatment groups (no treatment, acid treatment, aluminum oxide sandblasting and diamond bur abrasion) were tested. Each treatment group was randomly divided in half and repaired with either silorane resin composite (LS adhesive) or methacrylate based resin composite (Filtek Z250/Single Bond Plus). Specimens were 12 blocks and 108 beams per group. After 24 hours in 37oC distilled water, microtensile bond strength testing was performed using a non-trimming technique. Fracture surfaces were examined using an optical microscopy (20X) to determine failure mode. Data was analyzed using Weibull-distribution survival analysis. Results: Aluminum oxide sandblasting followed by silorane or methacrylate based resin composite and acid treatment with methacrylate based resin composite provided insignificant differences from the control (p>0.05). All other groups were significantly lower than the control. Failure was primarily adhesive in all groups. Conclusion: Aluminum oxide sandblasting produced comparable microtensile bond strength compared to the cohesive strength of silorane resin composite. After aluminum oxide sandblasting, aged silorane resin composite can be repaired with either silorane resin composite with LS system adhesive or methacrylate based resin composite with methacrylate based dentin adhesive.
2

Effect of surface conditioning methods on repair bond strength of microhybrid resin matrix composite

Rajitrangson, Phitakphong, 1982- January 2010 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Repair is an alternative treatment option in many cases to replacement of resin matrix composite restoration. However, aged resin matrix composites have a limited number of carbon-carbon double bonds to adhere to a new layer of rein. Therefore, surface treatments of the aged resin matrix composite surface prior to repairing could improve the repair bond strength. The objectives of this study were to: 1) To evaluate various surface treatments on shear bond strength of repair between aged and new microhybrid resin matrix composite, and 2) To assess the influence of applying a silane coupling agent after surface treatments. Eighty disk-shaped resin matrix composite specimens were fabricated and thermocycled 5000 times prior to surface treatment. Specimens were randomly assigned to one of the three surface treatments (n = 20): 1) Airborne abrasion with 50 μm aluminum oxide, 2) Tribochemical silica coating (CoJet), or 3) Er,Cr:YSGG laser and control group (n = 20). Specimens were cleaned with 35-percent phosphoric acid, rinsed, and dried. Each group was assigned into two subgroups (n =10): a) no silanization, and b) with silanization. Adhesive agent was applied and new resin matrix composite was bonded to each conditioned surface. Bond strength was evaluated by shear test. Data were analyzed with a two-way ANOVA model. The interaction between conditioning and silanization was significant(p = 0.0163), indicating that comparisons of silanization must be evaluated for each conditioning method, and that comparisons of conditioning methods must be evaluated separately with and without silanization. Airborne particle abrasion showed significantly higher repair bond strength than Er,Cr:YSGG laser without silanization (p < 0.0001) and with silanization(p = 0.0002), and higher repair bond strength than the control without silanization (p < 0.00001) and with silanization (p < 0.00001). Airborne particle abrasion did not have significantly different in repair bond strength than Tribosilica coating without silanization (p = 0.70) or with silanization (p = 0.33). Tribosilica coating had significantly higher repair bond strength than Er,CR:YSGG laser without silanization (p < 0.0001) and with silanization (p < 0.0001), and significantly higher repair bond strength than control without silanization (p < 0.0001), but not with silanization (p =0.16). Er,CR:YSGG laser and control did not have significantly different repair bond strength without silanization (p = 1.00) or with silanization (p = 0.11). There was no effect of silanization on repair bond strength overall (p = 0.34) for any of the surface conditioning methods (p = 0.76 for airborne particle abrasion; p = 0.39 for tribosilica coating; p = 1.00 for Er,Cr:YSGG laser, or p = 0.39 for control). Airborne particle abrasion with 50-μm aluminum oxide particle and tribochemical silica coating followed by the application of bonding agent provided the highest shear bond strength values, suggesting that they might be adequate methods to improve the quality of the repairs of resin-matrix composites.

Page generated in 0.0776 seconds