• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 7
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Die Physiologische Relevanz des G-Protein-gekoppelten Rezeptors GPR34

Liebscher, Ines 19 January 2011 (has links) (PDF)
Die Familie der G-Protein-gekoppelten Rezeptoren (GPCRs) bildet die größte Gruppe von Membranrezeptoren im menschlichen Organismus. Für viele GPCRs sind bisher die physiologischen Funktionen nicht bekannt. Das biologische Verständnis der Funktionen im menschlichen Organismus dieser sogenannten „orphan“ GPCRs (oGPCRs) hat, aufgrund möglicher kausaler Beteiligung an der Pathogenese von Erkrankungen sowie deren therapeutische Beeinflussbarkeit, hohe medizinische Relevanz. Die GPCRs der P2Y12-ähnliche Rezeptorgruppe besitzen eine große physiologische Bedeutung bei der Thrombozytenaggregation und der Induktion der Migration von immunokompetenten Zellen in Schädigungsgebiete. Der ADP-Rezeptor P2Y12 kann durch verschiedene pharmakologische Wirkstoffe beeinflusst werden, was bereits klinisch-therapeutisch genutzt wird. Diese Gruppe von GPCRs enthält jedoch auch Mitglieder, deren Funktionen völlig unbekannt sind. Einer dieser oGPCRs ist der GPR34. Ziel dieser Arbeit war es, mittels verschiedener in-vitro-Methoden und anhand eines GPR34-defizienten Mausstamms die physiologische Relevanz dieses P2Y12-ähnlichen Rezeptors zu analysieren. Dazu wurde ein GPR34-Knockout-Mausmodell etabliert. Die GPR34-Defizienz hatte keinen wesentlichen Einfluss auf die Entwicklung, Morphologie, das Wachstum oder die Fertilität bei Mäusen. Die Ergebnisse aus Immunisierungs– und Infektionsstudien zeigten jedoch, dass dieser evolutionär hoch konservierte Rezeptor eine wichtige Funktion in der Feinkontrolle der zellulären Immunabwehr ausübt. Neben einer verstärkten Antwort im Delayed-type Hypersensitivity (DTH)-Test war die Abwehr einer Cryptococcus-Infektion in diesem GPR34-defizienten Tiermodell beeinträchtigt. Signifikant erhöhte Zytokinspiegel nach Antigen- bzw. Pathogenexposition deuteten auf eine gestörte Immunregulation in GPR34-defizienten Mäusen hin. Weiterführende Untersuchungen sollten sich der Identifizierung des endogenen Agonisten und der Funktion des GPR34 bei der Koordinierung der zellulären Immunreaktion widmen.
2

Coding of tsetse repellents by olfactory sensory neurons: towards the improvement and the development of novel tsetse repellents

Souleymane, Diallo January 2021 (has links)
Philosophiae Doctor - PhD / Tsetse flies are the biological vectors of human and animal trypanosomiasis and hence representant medical and veterinary importance. The sense of smell plays a significant role in tsetse and its ecological interaction, such as finding blood meal source, resting, and larvicidal sites and for mating. Tsetse olfactory behaviour can be exploited for their management; however, olfactory studies in tsetse flies are still fragmentary. Here in my PhD thesis, using scanning electron microscopy, electrophysiology, behaviour, bioinformatics and molecular biology techniques, I have investigated tsetse flies (Glossina fuscipes fuscipes) olfaction using behaviourally well studied odorants, tsetse repellent by comparing with attractant odour. Insect olfaction is mediated by olfactory sensory neurons (OSNs), located in olfactory sensilla, which are cuticular structures exposed to the environment through pore and create a platform for chemical communication.
3

Die Physiologische Relevanz des G-Protein-gekoppelten Rezeptors GPR34

Liebscher, Ines 20 December 2010 (has links)
Die Familie der G-Protein-gekoppelten Rezeptoren (GPCRs) bildet die größte Gruppe von Membranrezeptoren im menschlichen Organismus. Für viele GPCRs sind bisher die physiologischen Funktionen nicht bekannt. Das biologische Verständnis der Funktionen im menschlichen Organismus dieser sogenannten „orphan“ GPCRs (oGPCRs) hat, aufgrund möglicher kausaler Beteiligung an der Pathogenese von Erkrankungen sowie deren therapeutische Beeinflussbarkeit, hohe medizinische Relevanz. Die GPCRs der P2Y12-ähnliche Rezeptorgruppe besitzen eine große physiologische Bedeutung bei der Thrombozytenaggregation und der Induktion der Migration von immunokompetenten Zellen in Schädigungsgebiete. Der ADP-Rezeptor P2Y12 kann durch verschiedene pharmakologische Wirkstoffe beeinflusst werden, was bereits klinisch-therapeutisch genutzt wird. Diese Gruppe von GPCRs enthält jedoch auch Mitglieder, deren Funktionen völlig unbekannt sind. Einer dieser oGPCRs ist der GPR34. Ziel dieser Arbeit war es, mittels verschiedener in-vitro-Methoden und anhand eines GPR34-defizienten Mausstamms die physiologische Relevanz dieses P2Y12-ähnlichen Rezeptors zu analysieren. Dazu wurde ein GPR34-Knockout-Mausmodell etabliert. Die GPR34-Defizienz hatte keinen wesentlichen Einfluss auf die Entwicklung, Morphologie, das Wachstum oder die Fertilität bei Mäusen. Die Ergebnisse aus Immunisierungs– und Infektionsstudien zeigten jedoch, dass dieser evolutionär hoch konservierte Rezeptor eine wichtige Funktion in der Feinkontrolle der zellulären Immunabwehr ausübt. Neben einer verstärkten Antwort im Delayed-type Hypersensitivity (DTH)-Test war die Abwehr einer Cryptococcus-Infektion in diesem GPR34-defizienten Tiermodell beeinträchtigt. Signifikant erhöhte Zytokinspiegel nach Antigen- bzw. Pathogenexposition deuteten auf eine gestörte Immunregulation in GPR34-defizienten Mäusen hin. Weiterführende Untersuchungen sollten sich der Identifizierung des endogenen Agonisten und der Funktion des GPR34 bei der Koordinierung der zellulären Immunreaktion widmen.
4

Orphan G-Protein Coupled Receptors : Can we deorphanize the remaining orphans despite all the challenges?

Andersson, Micaela January 2022 (has links)
G-protein coupled receptors (GPCRs) play a key role in a broad range of biological processes by binding to a wide variety of signaling molecules, which have resulted in 34% of all FDA-approved drugs which target GPCRs. The human genome encodes for approximately 800 GPCR members of which about 140 non-olfactory receptors remain orphans with an unknown function and endogenous ligand. Despite prolonged efforts to deorphanize the unresolved receptors, they remain orphans until this day. By studying scientific publications, this thesis has clarified the challenges with the deorphanization of GPCRs to explain why there are still so many orphan GPCRs when they have confirmed involvement in so many human disorders.
5

Modèles numériques des mécanismes de l’olfaction / Numerical modeling of olfaction

Bushdid, Caroline 06 November 2018 (has links)
L’homme possède ~400 gènes codant pour des récepteurs aux odorants (ROs) qui sont différentiellement activés par un espace virtuellement infini de molécules. Le code combinatoire qui résulte de cette activation permettrait au nez humain de discriminer plus de mille milliards de stimuli olfactifs différents. Mais comment le percept est-il encodé dans la structure d’une molécule ? Pour comprendre comment notre nez décrypte la structure des molécules odorantes, des modèles numériques ont été utilisés pour étudier les principaux protagonistes de l’olfaction : les ROs et les odorants. Ici, l’apprentissage automatique est utilisé pour explorer et exploiter les données déjà existantes sur les ROs. D’autre part, la modélisation moléculaire est employée pour comprendre les mécanismes qui sous-tendent la reconnaissance moléculaire. Dans cette thèse j’ai passé en revue les relations structure-odeur du point de vue d’un chimiste. J’ai ensuite développé un protocole d’apprentissage automatique, qui a été validé pour prédire de nouveaux ligands pour quatre ROs. La modélisation moléculaire a été utilisée pour comprendre la reconnaissance moléculaire des ROs. Notamment, l’existence d’un site vestibulaire conservé dans une classe de ROs a été mis en évidence et le rôle de la cavité de liaison orthostérique dans les ROs a été étudiée. L’application de ces techniques permet de moderniser la déorphanisation guidée par ordinateur. Dans sa globalité, mes travaux ont aussi permis de préparer le terrain pour tester de façon virtuelle le code combinatoire des odeurs, et pour prédire la réponse physiologique déclenchée par ces molécules. Dans son ensemble, ce travail ancre la relation structure-odeur dans l’ère post-génomique, et souligne la possibilité de combiner différentes approches computationnelles pour étudier l’olfaction. / Humans have ~400 genes encoding odorant receptors (ORs) that get differentially activated by a virtually infinite space of small organic molecules. The combinatorial code resulting from this activation could allow the human nose to discriminate more than one trillion different olfactory stimuli. But how is the percept encoded in the structure of a molecule? To understand how our nose decrypts the structure of molecules, numerical models were used to study the main protagonists of olfaction: ORs and odorants. These approaches included machine-learning methods to explore and exploit existing data on ORs, and molecular modeling to understand the mechanisms behind molecular recognition. In this thesis I first review the structure-odor relationships from a chemist's point of view. Then, I explain how I developed a machine learning protocol which was validated by predicting new ligands for four ORs. In addition, molecular modeling was used to understand how molecular recognition takes place in ORs. In particular, a conserved vestibular binding site in a class of human ORs was discovered, and the role of the orthosteric binding cavity was studied. The application of these techniques allows upgrading computer aided deorphanization of ORs. My thesis also establishes the basis for testing computationally the combinatorial code of smell perception. Finally, it lays the groundwork for predicting the physiological response triggered upon odorant stimulation. Altogether, this work anchors the structure-odor relationship in the post-genomic era, and highlights the possibility to combine different computational approaches to study smell.
6

Coding of tsetse repellents by olfactory sensory neurons: towards the improvement and the development of novel tsetse repellents

Souleymane, Diallo January 2020 (has links)
Philosophiae Doctor - PhD / Tsetse flies are the biological vectors of human and animal trypanosomiasis and hence representant medical and veterinary importance. The sense of smell plays a significant role in tsetse and its ecological interaction, such as finding blood meal source, resting, and larvicidal sites and for mating. Tsetse olfactory behaviour can be exploited for their management; however, olfactory studies in tsetse flies are still fragmentary. Here in my PhD thesis, using scanning electron microscopy, electrophysiology, behaviour, bioinformatics and molecular biology techniques, I have investigated tsetse flies (Glossina fuscipes fuscipes) olfaction using behaviourally well studied odorants, tsetse repellent by comparing with attractant odour. Insect olfaction is mediated by olfactory sensory neurons (OSNs), located in olfactory sensilla, which are cuticular structures exposed to the environment through pore and create a platform for chemical communication. In the sensilla shaft the dendrite of OSNs are housed, which are protected by called the sensillum lymph produced by support cells and contains a variety of olfactory proteins, including the odorant binding protein (OBP) and chemosensory proteins (CSP). While on the dendrite of OSNs are expressed olfactory receptors. In my PhD, studies I tried to decipher the sense of smell in tsetse fly. In the second chapter, I demonstrated that G. f. fuscipes is equipped with diverse olfactory sensilla, that various from basiconic, trichoid and coeloconic. I also demonstrated, there is shape, length, number difference between sensilla types and sexual dimorphism. There is a major difference between male and female, while male has the unique basiconic sensilla, club shaped found in the pits, which is absent from female pits. In my third chapter, I investigated the odorant receptors which are expressed on the dendrite of the olfactory sensory neurons (OSNs). G. f. fuscipes has 42 ORs, which were not functionally characterised. I used behaviourally well studied odorants, tsetse repellents, composed of four components blend. I demonstrated that tsetse repellent is also a strong antifeedant for both G. pallidipes and G. f. fuscipes using feeding bioassays as compared to the attractant odour, adding the value of tsetse repellent. However, the attractant odour enhanced the feeding index. Using DREAM (deorphanization of receptors based on expression alterations of mRNA levels). I found that in G. f. fuscipes, following a short in vivo exposure to the individual tsetse repellent component as well as an attractant volatile chemical, OSNs that respond to these compounds altered their mRNA expression in two opposite direction, significant downregulation and upregulation in their number of transcripts corresponding to the OR that they expressed and interacted with odorant. Also, I found that the odorants with opposite valence already segregate distinctly at the cellular and molecular target at the periphery, which is the reception of odorants by OSNs, which is the basis of sophisticated olfactory behaviour. Deorphanization of ORs in none model insect is a challenge, here by combining DREAM with molecular dynamics, as docking score, physiology and homology modelling with Drosophila a well-studied model insects, I was able to predict putative receptors of the tsetse repellent components and an attractant odour. However, many ORs were neutral, showing they were not activated by the odorants, demonstrating the selectivity of the technique as well as the receptors. In my fourth chapter, I investigated the OBPs structures and their interaction with odorants molecules. I demonstrated that OBPs are expressed both in the antenna, as well as in other tissues, such as legs. I also demonstrated that there are variations in the expression of OBPs between tissues as well as sexes. I also demonstrated that odorants induced a fast alteration in OBP mRNA expression, some odorants induced a decrease in the transcription of genes corresponding to the activated OBP and others increased the expression by many fold in OBPs in live insect, others were neutral after 5 hours of exposure. Moreover, with subsequent behavioural data showed that the behavioural response of G. f. fuscipes toward 1-octen-3-ol decreased significantly when 1-octen-3-ol putative OBPs were silenced with feeding of double-stranded RNA (dsRNA). In summary, our finding whereby odorant exposure affects the OBPs mRNA, their physiochemical properties and the silencing of these OBPs affected the behavioural response demonstrate that the OBPs are involved in odour detection that affect the percept of the given odorant. The expression of OBPs in olfactory tissues, antenna and their interaction with odorant and their effect on behavioural response when silenced shows their direct involvement in odour detection and reception. Furthermore, their expression in other tissues such as legs indicates they might also have role in other physiological functions, such as taste.
7

Coding of tsetse repellents by olfactory sensory neurons: towards the improvement and the development of novel

Souleymane, Diallo January 2020 (has links)
Philosophiae Doctor - PhD / Tsetse flies are the biological vectors of human and animal trypanosomiasis and hence representant medical and veterinary importance. The sense of smell plays a significant role in tsetse and its ecological interaction, such as finding blood meal source, resting, and larvicidal sites and for mating. Tsetse olfactory behaviour can be exploited for their management; however, olfactory studies in tsetse flies are still fragmentary. Here in my PhD thesis, using scanning electron microscopy, electrophysiology, behaviour, bioinformatics and molecular biology techniques, I have investigated tsetse flies (Glossina fuscipes fuscipes) olfaction using behaviourally well studied odorants, tsetse repellent by comparing with attractant odour. Insect olfaction is mediated by olfactory sensory neurons (OSNs), located in olfactory sensilla, which are cuticular structures exposed to the environment through pore and create a platform for chemical communication. In the sensilla shaft the dendrite of OSNs are housed, which are protected by called the sensillum lymph produced by support cells and contains a variety of olfactory proteins, including the odorant binding protein (OBP) and chemosensory proteins (CSP). While on the dendrite of OSNs are expressed olfactory receptors. In my PhD, studies I tried to decipher the sense of smell in tsetse fly. In the second chapter, I demonstrated that G. f. fuscipes is equipped with diverse olfactory sensilla, that various from basiconic, trichoid and coeloconic. I also demonstrated, there is shape, length, number difference between sensilla types and sexual dimorphism. There is a major difference between male and female, while male has the unique basiconic sensilla, club shaped found in the pits, which is absent from female pits. In my third chapter, I investigated the odorant receptors which are expressed on the dendrite of the olfactory sensory neurons (OSNs). G. f. fuscipes has 42 ORs, which were not functionally characterised. I used behaviourally well studied odorants, tsetse repellents, composed of four components blend. I demonstrated that tsetse repellent is also a strong antifeedant for both G. pallidipes and G. f. fuscipes using feeding bioassays as compared to the attractant odour, adding the value of tsetse repellent. However, the attractant odour enhanced the feeding index. Using DREAM (deorphanization of receptors based on expression alterations of mRNA levels). I found that in G. f. fuscipes, following a short in vivo exposure to the individual tsetse repellent component as well as an attractant volatile chemical, OSNs that respond to these compounds altered their mRNA expression in two opposite direction, significant downregulation and upregulation in their number of transcripts corresponding to the OR that they expressed and interacted with odorant. Also, I found that the odorants with opposite valence already segregate distinctly at the cellular and molecular target at the periphery, which is the reception of odorants by OSNs, which is the basis of sophisticated olfactory behaviour. Deorphanization of ORs in none model insect is a challenge, here by combining DREAM with molecular dynamics, as docking score, physiology and homology modelling with Drosophila a well-studied model insects, I was able to predict putative receptors of the tsetse repellent components and an attractant odour. However, many ORs were neutral, showing they were not activated by the odorants, demonstrating the selectivity of the technique as well as the receptors. In my fourth chapter, I investigated the OBPs structures and their interaction with odorants molecules. I demonstrated that OBPs are expressed both in the antenna, as well as in other tissues, such as legs. I also demonstrated that there are variations in the expression of OBPs between tissues as well as sexes. I also demonstrated that odorants induced a fast alteration in OBP mRNA expression, some odorants induced a decrease in the transcription of genes corresponding to the activated OBP and others increased the expression by many fold in OBPs in live insect, others were neutral after 5 hours of exposure. Moreover, with subsequent behavioural data showed that the behavioural response of G. f. fuscipes toward 1-octen-3-ol decreased significantly when 1-octen-3-ol putative OBPs were silenced with feeding of double-stranded RNA (dsRNA). In summary, our finding whereby odorant exposure affects the OBPs mRNA, their physiochemical properties and the silencing of these OBPs affected the behavioural response demonstrate that the OBPs are involved in odour detection that affect the percept of the given odorant. The expression of OBPs in olfactory tissues, antenna and their interaction with odorant and their effect on behavioural response when silenced shows their direct involvement in odour detection and reception. Furthermore, their expression in other tissues such as legs indicates they might also have role in other physiological functions, such as taste.

Page generated in 0.1103 seconds