• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Advances in Bayesian Modelling and Computation: Spatio-Temporal Processes, Model Assessment and Adaptive MCMC

Ji, Chunlin January 2009 (has links)
<p>The modelling and analysis of complex stochastic systems with increasingly large data sets, state-spaces and parameters provides major stimulus to research in Bayesian nonparametric methods and Bayesian computation. This dissertation presents advances in both nonparametric modelling and statistical computation stimulated by challenging problems of analysis in complex spatio-temporal systems and core computational issues in model fitting and model assessment. The first part of the thesis, represented by chapters 2 to 4, concerns novel, nonparametric Bayesian mixture models for spatial point processes, with advances in modelling, computation and applications in biological contexts. Chapter 2 describes and develops models for spatial point processes in which the point outcomes are latent, where indirect observations related to the point outcomes are available, and in which the underlying spatial intensity functions are typically highly heterogenous. Spatial intensities of inhomogeneous Poisson processes are represented via flexible nonparametric Bayesian mixture models. Computational approaches are presented for this new class of spatial point process mixtures and extended to the context of unobserved point process outcomes. Two examples drawn from a central, motivating context, that of immunofluorescence histology analysis in biological studies generating high-resolution imaging data, demonstrate the modelling approach and computational methodology. Chapters 3 and 4 extend this framework to define a class of flexible Bayesian nonparametric models for inhomogeneous spatio-temporal point processes, adding dynamic models for underlying intensity patterns. Dependent Dirichlet process mixture models are introduced as core components of this new time-varying spatial model. Utilizing such nonparametric mixture models for the spatial process intensity functions allows the introduction of time variation via dynamic, state-space models for parameters characterizing the intensities. Bayesian inference and model-fitting is addressed via novel particle filtering ideas and methods. Illustrative simulation examples include studies in problems of extended target tracking and substantive data analysis in cell fluorescent microscopic imaging tracking problems.</p><p>The second part of the thesis, consisting of chapters 5 and chapter 6, concerns advances in computational methods for some core and generic Bayesian inferential problems. Chapter 5 develops a novel approach to estimation of upper and lower bounds for marginal likelihoods in Bayesian modelling using refinements of existing variational methods. Traditional variational approaches only provide lower bound estimation; this new lower/upper bound analysis is able to provide accurate and tight bounds in many problems, so facilitates more reliable computation for Bayesian model comparison while also providing a way to assess adequacy of variational densities as approximations to exact, intractable posteriors. The advances also include demonstration of the significant improvements that may be achieved in marginal likelihood estimation by marginalizing some parameters in the model. A distinct contribution to Bayesian computation is covered in Chapter 6. This concerns a generic framework for designing adaptive MCMC algorithms, emphasizing the adaptive Metropolized independence sampler and an effective adaptation strategy using a family of mixture distribution proposals. This work is coupled with development of a novel adaptive approach to computation in nonparametric modelling with large data sets; here a sequential learning approach is defined that iteratively utilizes smaller data subsets. Under the general framework of importance sampling based marginal likelihood computation, the proposed adaptive Monte Carlo method and sequential learning approach can facilitate improved accuracy in marginal likelihood computation. The approaches are exemplified in studies of both synthetic data examples, and in a real data analysis arising in astro-statistics.</p><p>Finally, chapter 7 summarizes the dissertation and discusses possible extensions of the specific modelling and computational innovations, as well as potential future work.</p> / Dissertation
2

Bayesian Nonparametric Modeling and Inference for Multiple Object Tracking

January 2019 (has links)
abstract: The problem of multiple object tracking seeks to jointly estimate the time-varying cardinality and trajectory of each object. There are numerous challenges that are encountered in tracking multiple objects including a time-varying number of measurements, under varying constraints, and environmental conditions. In this thesis, the proposed statistical methods integrate the use of physical-based models with Bayesian nonparametric methods to address the main challenges in a tracking problem. In particular, Bayesian nonparametric methods are exploited to efficiently and robustly infer object identity and learn time-dependent cardinality; together with Bayesian inference methods, they are also used to associate measurements to objects and estimate the trajectory of objects. These methods differ from the current methods to the core as the existing methods are mainly based on random finite set theory. The first contribution proposes dependent nonparametric models such as the dependent Dirichlet process and the dependent Pitman-Yor process to capture the inherent time-dependency in the problem at hand. These processes are used as priors for object state distributions to learn dependent information between previous and current time steps. Markov chain Monte Carlo sampling methods exploit the learned information to sample from posterior distributions and update the estimated object parameters. The second contribution proposes a novel, robust, and fast nonparametric approach based on a diffusion process over infinite random trees to infer information on object cardinality and trajectory. This method follows the hierarchy induced by objects entering and leaving a scene and the time-dependency between unknown object parameters. Markov chain Monte Carlo sampling methods integrate the prior distributions over the infinite random trees with time-dependent diffusion processes to update object states. The third contribution develops the use of hierarchical models to form a prior for statistically dependent measurements in a single object tracking setup. Dependency among the sensor measurements provides extra information which is incorporated to achieve the optimal tracking performance. The hierarchical Dirichlet process as a prior provides the required flexibility to do inference. Bayesian tracker is integrated with the hierarchical Dirichlet process prior to accurately estimate the object trajectory. The fourth contribution proposes an approach to model both the multiple dependent objects and multiple dependent measurements. This approach integrates the dependent Dirichlet process modeling over the dependent object with the hierarchical Dirichlet process modeling of the measurements to fully capture the dependency among both object and measurements. Bayesian nonparametric models can successfully associate each measurement to the corresponding object and exploit dependency among them to more accurately infer the trajectory of objects. Markov chain Monte Carlo methods amalgamate the dependent Dirichlet process with the hierarchical Dirichlet process to infer the object identity and object cardinality. Simulations are exploited to demonstrate the improvement in multiple object tracking performance when compared to approaches that are developed based on random finite set theory. / Dissertation/Thesis / Doctoral Dissertation Electrical Engineering 2019

Page generated in 0.065 seconds