• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Equilibrium Bidding in Joint Transmission and Energy Markets

Babayigit, Cihan 08 November 2007 (has links)
Participants in deregulated electric power markets compete for financial transmission rights (FTRs) to hedge against losses due to transmission congestion by submitting bids to the independent system operator (ISO). The ISO obtains an FTR allocation, that maximizes sales revenue while satisfying simultaneous feasibility. This FTR allocation remains in place for a length of time during which the participants compete in the energy market to maximize their total payoff from both FTR and energy markets. Energy markets (bi-lateral, day ahead, real time) continue until the the end of the current FTR period, at which time the participants can choose to modify their FTR holdings for the next FTR period. As in any noncooperative game, finding Nash equilibrium bidding strategies is of critical importance to the participants in both FTR and energy markets. In this research, a two-tier matrix game theoretic modeling approach is developed that can be used to obtain equilibrium bidding behavior of the participants in both FTR and energy markets considering the total payoff from FTR and energy. The matrix game model presents a significant deviation from the bilevel optimization approach commonly used to model FTR and energy allocation problems. A reinforcement learning (RL) algorithm is also developed which uses a simulation model and a value maximization approach to obtain the equilibrium bidding strategies in each market. The model and the RL based solution approach allow consideration of multi-dimensional bids (for both FTR and energy markets), network contingencies, varying demands, and many participants. The value iteration based RL algorithm obtains pure strategy Nash equilibrium for FTR and energy allocation. A sample network with three buses and four participants is considered for demonstrating the viability of the game theoretic model for FTR market. A PJM network example with five buses, five generators and three loads is also considered to analyze equilibrium bidding behavior in joint FTR and energy markets. Several numerical experiments on the sample networks are conducted using the approach of statistical design of experiments (DOE) to assess impacts of variations of bid and network parameters on the market outcomes like participant payoffs and equilibrium strategies.
2

Generation capacity expansion in restructured energy markets

Nanduri, Vishnuteja 01 June 2009 (has links)
With a significant number of states in the U.S. and countries around the world trading electricity in restructured markets, a sizeable proportion of capacity expansion in the future will have to take place in market-based environments. However, since a majority of the literature on capacity expansion is focused on regulated market structures, there is a critical need for comprehensive capacity expansion models targeting restructured markets. In this research, we develop a two-level game-theoretic model, and a novel solution algorithm that incorporates risk due to volatilities in profit (via CVaR), to obtain multi-period, multi-player capacity expansion plans. To solve the matrix games that arise in the generation expansion planning (GEP) model, we first develop a novel value function approximation based reinforcement learning (RL) algorithm. Currently there exist only mathematical programming based solution approaches for two player games and the N-player extensions in literature still have several unresolved computational issues. Therefore, there is a critical void in literature for finding solutions of N-player matrix games. The RL-based approach we develop in this research presents itself as a viable computational alternative. The solution approach for matrix games will also serve a much broader purpose of being able to solve a larger class of problems known as stochastic games. This RL-based algorithm is used in our two-tier game-theoretic approach for obtaining generation expansion strategies. Our unique contributions to the GEP literature include the explicit consideration of risk due to volatilities in profit and individual risk preference of generators. We also consider transmission constraints, multi-year planning horizon, and multiple generation technologies. The applicability of the twotier model is demonstrated using a sample power network from PowerWorld software. A detailed analysis of the model is performed, which examines the results with respect to the nature of Nash equilibrium solutions obtained, nodal prices, factors affecting nodal prices, potential for market power, and variations in risk preferences of investors. Future research directions include the incorporation of comprehensive cap-and-trade and renewable portfolio standards components in the GEP model.
3

Optimization Of Electricity Markets In The Price Based And Security Constrained Unit Commitment Problems Frameworks

Sahin, Cem 01 July 2010 (has links) (PDF)
Operation of the electricity markets is subject to a number of strict and specific constraints such as continuous load-generation balance, security of supply, and generation technology related limitations. Contributions have been made to two important problems of the Electricity Markets, in the context of this study. In this study, Price Based Unit Commitment problem in the literature, which is a tool for the GENCO for operations planning, is extended considering the interdependencies between the Natural Gas (NG) and Electricity infrastructures and the uncertainty of Wind Power generation. The effect of the NG infrastructure physical limitations is considered via linearized NG transmission system equations, and the Wind energy sources and conventional generation resource uncertainties are simulated by Monte-Carlo simulations. The contribution of the forward energy Bilateral Contracts (BC), as a financial risk hedging tool is also included by modeling these in the proposed PBUC framework. In the case studies , it is observed that a GENCO could prevent its financial losses due to NG interruptions, by depositing only a portion of the midterm interrupted NG in the storage facilities. The Security Constrained Unit Commitment (SCUC) Problem is widely accepted tool in the industry which models the market clearing process. This study integrates two novelties to the SCUC problem / &bull / A discrete demand response model to consider active participation of the consumers, &bull / A hybrid deterministic/stochastic contingency model to represent the N-1 contingencies together with the uncertainties related with the wind power generation and system load. It is observed that the curtailment of available wind power capacity would enable the TSO to take corrective actions against occurrence of the contingencies and realization of the uncertainties in the most possible economical manner.

Page generated in 0.0956 seconds