Spelling suggestions: "subject:"design off materials"" "subject:"design oof materials""
1 |
Glass reinforced plastic pipe bends under a variety of loadsMyler, P. January 1985 (has links)
No description available.
|
2 |
Using Computer Simulation to Design New PolymersLuo, Miao 26 October 2018 (has links)
<p> HNBR is a widely used oil resistant polymer with good tear strength. Due to these properties, HNBR is used in oil wells. However, harsh working environments require high equipment maintenance fees and HNBR will be degraded when contacted with H<sub>2</sub>S. This study aims to improve the mechanical properties and H<sub>2</sub>S resistance of HNBR through molecular dynamics simulations. Some of the simulation results are compared with experimental results and literature values. In this study, the solubility parameters and densities of pure HNBR with varying acrylonitrile content, FKM and three surfactants (KBM503, a trimethoxysilane methacrylate, A10, a perfluoroalkoxy bis(alkylamide), and Capstone-62MA, a semifluorinated methacrylate) are calculated by molecular dynamics simulation. The cohesive energy densities of 50/50 HNBR/FKM blends with different kinds and content of surfactants are calculated. The diffusion of H<sub>2</sub>S and CO<sub>2</sub> are predicted by molecular dynamics simulation. The solubility coefficients of H<sub>2</sub>S and CO<sub>2</sub> are predicted by Grand Canonical Monte Carlo (GCMC) simulations. A series of NPT simulations (constant of number of atoms, pressure and temperature) are used to estimate the glass-transition temperature of Capstone-62MA grafted HNBR. Dissipative Particles Dynamics (DPD) simulations are used to obtain the micro phase separation of Capstone-62MA grafted HNBR. The results shows that the solubility parameter values and densities we obtained from molecular dynamics simulations are fitted very well with literature values. According to our calculation of energy of mixing for HNBR/FKM blends with three surfactant (KBM503, A10 and Capstone-62MA), KBM503 has the largest effect. Based on the experiment results for HNBR/FKM blends with different mass fractions of KBM503, the tensile stress at break and elongation at break increases with the increases of KBM503 content until the mass fraction KBM503 is equal to 5%. When the mass fraction of KBM503 is 5%, adding more KBM503 decreases both mechanical properties. However, the tear strength keeps increasing when the mass fraction of KBM503 increases. The conclusion obtained from these experiments and simulations indicates that mixing HNBR with FKM can improve some mechanical properties but this method has disadvantages due the large discrepancy between the solubility parameters of HNBR and FKM. Gas diffusion and solubility calculations indicate that the diffusion and solubility of H<sub>2</sub>S decrease with the content of Capstone-62MA increases. The gas diffusion of H<sub>2</sub>S also decreases with increasing content of acrylonitrile in HNBR. However, the solubility of H<sub>2</sub>S also increases with the content of acrylonitrile in HNBR. For comparison with H<sub>2</sub>S, the diffusivity and solubility of CO<sub>2</sub> are calculated. The diffusion of CO<sub>2</sub> increases with the increase of Capstone-62MA content. The solubility of CO<sub>2</sub> decreases with increases of Capstone-62MA in HNBR with 17 wt% acrylonitrile content. For HNBR with 36 wt% acrylonitrile content, increasing the content of Capstone-62MA first increases the solubility of CO<sub>2</sub> and then reduces it when the content of Capstone-62MA is larger than 2%. The calculation also indicates that diffusion and solubility coefficient are reduced when the content of acrylonitrile increases in HNBR. Calculations for the glass-transition temperature of HNBR with different numbers of Capstone-62MA chains suggest that the glass-transition temperature is not changed by grafting Capstone-62MA onto the backbone of HNBR. These results are compared with experimental results. Although the glass-transition temperatures obtained from simulations are higher than those obtained from experiment, they have the same trend as the content of Capstone-62MA is changed. DPD simulations suggest that micro phase separation exists in the Capstone-62MA grafted HNBR and this phenomenon improves the mechanical performance of polymers. In summary, we have used computer modeling to design new polymer materials and perform molecular dynamics simulations, Monte Carlo simulations and DPD simulations to predict some properties of these new materials. Some simulation results are compared with experimental results indicating that we indeed obtain a newly a polymer material with improved properties with the help of computer simulations.</p><p>
|
3 |
Solution of optimization problems with spatial symmetry and applications to adaptive opticsDenis, Nikolaos Athanasios 01 January 1998 (has links)
The essential characteristics of large systems is their high dimensionality due to which conventional control techniques fail to give reasonable solutions with reasonable computational efforts. A number of large systems encountered in practice are composed of subsystems with similar dynamics interconnected in a symmetrical fashion. The analysis and control of a large system with these particular features must take advantage of the existing structural properties to achieve computational simplifications of the overall problem. The focus of this thesis is the feedback design and analysis of large systems possessing the property of spatial symmetry. Specifically, the problems of controller design and analysis for infinite dimensional toeplitz systems and their finite dimensional analogs, circulant systems, are studied. These spatially symmetric systems are special classes of large systems. The first part of this thesis is focused on the development of formal controller design methodologies which take advantage of the properties of the circulant matrices. The key to this development is the use of the FFT algorithm to diagonalize circulant matrices. The resulting controller design methodologies are computationally attractive and easily applicable to large systems with circulant symmetry. More specifically, the H$\sb2$ and H$\sb{\infty}$ controller synthesis problems are studied in detail and are shown to decompose into lower order independent problems. The second part of this work concentrates on proving that certain finite order toeplitz systems are asymptotically equivalent in an appropriate sense to circulant systems. This result justifies the use of circulant control design techniques for certain toeplitz systems. Moreover, the closed loop effects of controlling a toeplitz system with a controller designed for its asymptotically equivalent circulant system are analyzed. The application of the developed theoretical results to a realistic example is the focus of the last part of the thesis. The adaptive optics system used in this example is modeled by a transfer function matrix with toeplitz symmetry. The computational efficiency of the controller design methodologies developed in this thesis is illustrated by designing a series of controllers for this system.
|
4 |
Load-displacement behavior of frame structures composed of fiber reinforced polymeric composite materialsNa, Gwang-Seok. January 2008 (has links)
Thesis (Ph.D)--Civil and Environmental Engineering, Georgia Institute of Technology, 2009. / Committee Chair: Dr. Leroy Z. Emkin; Committee Co-Chair: Dr. Abdul-Hamid Zureick; Committee Member: Dr. Dewey H. Hodges; Committee Member: Dr. Kenneth M. Will; Committee Member: Dr. Rami M. Haj-ali. Part of the SMARTech Electronic Thesis and Dissertation Collection.
|
5 |
Continuum Dislocation Dynamics Modeling of Mesoscale Crystal Plasticity at Finite DeformationKyle R Starkey (12476760) 29 April 2022 (has links)
<p>Over the past two decade, there have been renewed interests in the use of continuum models of dislocation to predict the plastic strength of metals from basic properties of dislocations. Such interests have been motivated by the unique self-organized dislocation microstructures that develop during plastic deformation of metals and the need to understand their origin and connection with strength of metals. This thesis effort focuses on the theoretical development of a vector-density based representation of dislocation dynamics on the mesoscale accounting for the kinematics of finite deformation. This model consists of two parts, the first is the development of the transport-reaction equations governing dislocation dynamics within the finite deformation setting, and the second focuses on the computational solution of the resulting model. The transport-reaction equations come in the form of a set of hyperbolic curl type transport equations, with reaction terms that nonlinearly couple these equations. The equations are also geometrically non-linear due to finite deformation kinematics and by their constitutive closure. The solution of the resulting model consists of two parts that are coupled in a staggered fashion, the crystal mechanics equations are lumped in the stress equilibrium equations, and the dislocation transport-reactions equations. The two sets of equations are solved by the Galerkin and First-Order System Least-Squares (FOSLS) finite element methods. A special attention is given to the accurate modeling of glissile dislocation junctions using de Rahm currents and graph theory ideas. The introduction of these measures requires the derivation of further transport relations. Using homogenization theory, we specialize the proposed model to a mean deformation gradient driven bulk plasticity model. Lastly, we simulate bulk plasticity behavior and compare our results against experiments.</p>
|
6 |
THREE-DIMENSIONAL MICROFABRICATION OF MECHANICAL METAMATERIALS VIA STEREOLITHOGRAPHY AND TWO-PHOTON POLYMERIZATIONVaidyanath Harinarayana (14215688) 07 December 2022 (has links)
<p> </p>
<p>With the advent of femtosecond lasers in the early 1990s, ultrafast laser processing has proven to be an imperative tool for micro/nanomachining. Two-photon lithography (TPL) is one such unique microfabrication technique exploiting the nonlinear dependency of the polymerization rate on the irradiating light intensity to produce true three-dimensional structures with feature sizes beyond the diffraction limit. This characteristic has revolutionized laser material processing for the fabrication of micro and nanostructures. This research first gives a general overview of TPL, including its operating principle, experimental setup, compatible materials, and techniques for improving the final resolution of the fabricated structure. Insights to improve throughput and speed of fabrication to pave a way for the industrialization of this technique are provided.</p>
<p>Following that, the report delves into the process of fabricating two true three-dimensional mechanical metamaterials via the stereolithography technique. This chapter encompasses the design, fabrication, and experimental analysis of a three-dimensional axisymmetric structure with elliptical perforations distributed periodically on the walls of the structure with varying thicknesses. Furthermore, this study discusses the significance of the elliptical perforations in terms of auxetic behavior and load-bearing capacity against a so-called plain structure under quasistatic compression loading.</p>
<p>Finally, the report explores the technique of fabricating a true three-dimensional cylindrical auxetic structure via two-photon polymerization. This section of the report examines the optical setup utilized, the sample preparation procedure, and calibration experiments performed in order to fabricate a three-dimensional thin-walled right cylinder with bowtie like perforations arranged on the walls to promote the exhibition of symmetric negative Poisson’s ratio under uniaxial quasistatic compression loading.</p>
|
7 |
Investigation of Natural AdhesivesBradley C Mcgill (13949928) 13 October 2022 (has links)
<p>Adhesives are found in almost every aspect of the modern world. They are found in plywood used in buildings, electronics, shoes, plumbing and in almost every facet of your daily life. Nature also has an abundance of these adhesives that are used fora multitude of applications. Some animals, like the blue mussel, use their adhesive for protection against ocean waves and predators while other animals, such as the spider, use it to trap prey. Investigation of theses adhesives has led to the identification of several different proteins that allow for these animals to make their adhesive. Some of them are composed of rare amino acids that while other animals use a combination of inorganic and organic components. Understanding of these unique adhesives can be a boon for designof future adhesives that do not have the disadvantagesof current day commercialized glues.</p>
<p>Increasing interest in the restoration of natural oyster reefs and the cement that holds them together has resulted in the identification of the Shelk2 protein that is found both in the mantle of the oyster’s shell as well as the cement that holds the reefs together. Gaining an understanding of how this protein functions and its part in the oyster reef could be quite beneficial for projects investing in reef restorations as well as underwater adhesion. Gathering protein from the animal for experimentation and characterization can be labor intensive and extremely challenging. Luckily, cloning technology has become a useful tool for the expression of large quantities of proteins that can be difficult or impossible to gather from the native animal. Using <em>E. coli</em>, it is possible to design and express this protein in hopes of gaining a better understanding of its impact on oyster settlement and adhesion.</p>
<p>Sustainability is a major downside to current day adhesives that current technologies have not been able to solve. Most adhesives that are on the market today are primarily derived from petroleum. Current research has begun investigating alternatives to the large epoxy and formaldehyde adhesive market, but the barrier of entry is hard to overcome. To replace these glues the new material must be affordable, non-petroleum derived, and available on a massive scale. These requirements are hard to meet for many materials and due to that the current bio-adhesive are generally very low strength.</p>
<p>The work presented here will detail the characterization, and expression of some of these natural adhesives that have been found in the Eastern oyster. Another aspect of this work includes the synthesis of a new bio-based adhesive system. Utilizing biomimetic chemistry along with sustainably sourced materials a new adhesive has been formulated that has comparable adhesive strength to current day commercial adhesives.</p>
|
8 |
TUNABLE MULTIFUNCTIONALITIES ACHIEVED IN OXIDE-BASED NANOCOMPOSITE THIN FILMSXingyao Gao (8088647) 06 December 2019 (has links)
<p>Functional oxide-based thin films
have attracted much attention owing to their broad applications in modern
society. The multifunction tuning in oxide thin films is critical for obtaining
enhanced properties. In this dissertation, four new nanocomposite thin film
systems with highly textured growth have been fabricated by pulsed laser
deposition technique. The functionalities including ferromagnetism,
ferroelectricity, multiferroism, magnetoelectric coupling, low-field
magnetoresistance, transmittance, optical bandgap and dielectric constants have
been demonstrated. Besides, the tunability of the functionalities have been
studied via different approaches.</p>
<p>First, varies deposition
frequencies have been used in vertically aligned nanocomposite BaTiO<sub>3</sub>:YMnO<sub>3</sub>
(BTO:YMO) and BaTiO<sub>3</sub>:La<sub>0.7</sub>Sr<sub>0.3</sub>Mn<sub>3
</sub>(BTO:LSMO) thin films. In both systems, the strain coupling effect
between the phases are affected by the density of grain boundaries. Increasing
deposition frequency generates thinner columns in BTO:YMO thin films, which
enhances the anisotropic ferromagnetic response in the thin films. In contrast,
the columns in BTO:LSMO thin films become discontinuous as the deposition
frequency increases, leading to the diminished anisotropic ferromagnetic
response. Coupling with the ferroelectricity in BTO, the room temperature
multiferroic properties have been obtained in these two systems.</p>
<p> Second, the
impact of the film composition has been demonstrated in La<sub>0.7</sub>Ca<sub>0.3</sub>MnO<sub>3</sub>
(LCMO):CeO<sub>2 </sub>thin film system, which has an insulating CeO<sub>2 </sub>in
ferromagnetic conducting LCMO matrix structure. As the atomic percentage of the
CeO<sub>2 </sub>increases, enhanced low-field magnetoresistance and increased
metal-to-insulator transition temperature are observed. The thin films also
show enhanced anisotropic ferromagnetic response comparing with the pure LCMO
film.</p>
<p> Third, the
transition metal element in Bi<sub>3</sub>MoM<sub>T</sub>O<sub>9 </sub>(M<sub>T</sub>,
transition metals of Mn, Fe, Co and Ni) thin films have been varied. The thin
films have a multilayered structure with M<sub>T</sub>-rich pillar-like domains
embedded in Mo-rich matrix structure. The anisotropic magnetic easy axis and
optical properties have been demonstrated. By the element variation, the
optical bandgaps, dielectric constants as well as anisotropic ferromagnetic
properties have been achieved. </p>
<p> The studies
in this dissertation demonstrate several examples of tuning the
multifunctionalities in oxide-based nanocomposite thin films. These enhanced
properties can broaden the applications of functional oxides for advanced
nanoscale devices.</p><br>
|
9 |
Beyond Survival : Designing Efficient and Environmentally Friendly Temporary Housing / Beyond Survival : Designing Efficient and Environmentally Friendly Temporary HousingRamgar, Mahnoosh January 2023 (has links)
In the aftermath of natural disasters, providing temporary housing to displaced people is essential to alleviate human suffering. However, in some cases, the chosen post-disaster temporary housing strategy may not be suitable for the local conditions, which can worsen the negative impacts, particularly when decision-makers need to change their original plan due to the uncertainty of post-disaster conditions. As most temporary housing design strategies have their weaknesses, the best approach is the one that matches the specific circumstances of each scenario. This thesis proposes design strategies, including prefabricated and modular units, foldable units, upgradable units, grid and linear expansion, and passive energy units, to determine the most appropriate policy to minimize conflicts between local requirements and temporary housing characteristics while maximizing the comfort and sustainability of temporary housing design. The strategies were analyzed based on their strength and weaknesses by following the previous research, and their implementation possibilities on recently occurred natural disasters, e.g., Turkey's earthquake in 2023, were also evaluated. It was found that all strategies except for grid and linear expansion might be suitable for the studied natural disaster.
|
10 |
Facilitating sustainable material selection in the industrial design of mass-manufactured productsDeakin, Rose January 2014 (has links)
Sustainable materials are prevalent within design, but industrial design lacks mass-manufactured product examples. This research explores this gap in knowledge to understand the influences affecting the selection of sustainable materials and how UK industrial designers could be better supported. A comprehensive literature review explores the selection of sustainable materials within the context of industrial design. Existing tools and resources designed to support industrial designers are analysed to understand the support provision and requirements. The research approach explores individual attitudes, and the influences towards and against selecting sustainable materials. Four UK companies were studied to understand how sustainable materials are considered and utilised for mass-manufactured products. Two frameworks were designed to support and facilitate sustainable material selection. The first depicts the overarching support requirements whilst the second presents the considerations and strategies. Both frameworks were evaluated by experts and previous participants. A workshop with designers evaluated the efficacy of the second framework when used as a tool The majority of industrial designers were aware of general issues of sustainability but rarely considered selecting sustainable materials. All four companies had experienced significant changes recently, including increasing resources and internal initiatives towards the use of sustainable materials. The market for sustainable materials is improving, but risks exist, such as fluctuating availability and market instability. A lack of awareness and understanding has meant that, in order to succeed, some companies have designed methods to educate stakeholders whilst designers have requested support to educate clients. Personal interest of the individual is a key driver, creating champions who raise awareness and boost confidence amongst colleagues. There is a need, not only for greater education and support, but also to improve engagement with sustainable material selection amongst industrial designers and others involved in the process.
|
Page generated in 0.0992 seconds