• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Microbial monitoring of bioremediation of a 1,2-dichloroethane-contaminated site

Wang, Shang-en 23 July 2012 (has links)
The aim of this study was to access the efficacy of an enhanced in situ bioremediation technology at a 1,2-dichloroethane (1,2-DCA) polluted site in southern Taiwan. A water-soluble substrate was injected into the groundwater to provide carbon sources for microbial growth. After substrate injection, increased total organic carbon (TOC) concentrations and microbial populations including Dehalococcoides spp. and Desulfitobacterium spp. were observed in the groundwater. Microbial diversity was analyzed using denaturing gradient gel electrophoresis (DGGE) and 16S rDNA sequencing to identify the bacterial strains. The results showed that after 4.5 months of substrate injection, the reduction-oxidation potential (ORP) changed from aerobic to anaerobic conditions. The less oxygen-tolerable 1,2-DCA degrading bacteria Dehalococcoides spp. started to accumulate in groundwater. However, the more oxygen-tolerable Desulfitobacterium spp. didn¡¦t show a prominent change, although the ORP was suitable for Desulfitobacterium spp. to carry out reductive dechlorination. The DGGE results indicate that with the injected carbon sources and mineral nutrients, both the groundwater microbial diversity and the amount of dominant bacteria were increased. The 16S rDNA sequencing demonstrated that the amount and diversity of 1,2-DCA degradation-related bacteria also increased with the injection of substrate. Six groups of 1,2-DCA degradation related reactions were found: dechlorination, chlorinated-compound degradation, denitrification, iron-reduction, sulfate-reduction and methane-utilizing. Four species that can directly degrade 1,2-DCA were found: Dehalobacter sp., Dehalococcoides sp., Nitrosospira sp. and Pseudomonas sp. Moreover, 11 methane-utilizing bacterial species were also discovered. The presence of these methane-utilizing bacteria not only might assist the process of denitrification and sulfate-reduction, but also could diminish the emission of the greenhouse gas. The results of this study confirmed that the addition of substrates could affect the groundwater oxidation-reduction state and enhance the bioremediation at the 1,2-DCA-contaminated site. Thus, enhanced in situ bioremediation is a feasible technology for site remediation.
2

Functional studies of CprK : a transcriptional regulator of organohalide respiration

Kemp, Laura January 2014 (has links)
Microbial respiration can be highly diverse and adaptable, with many bacteria able to respond to changes in their environment promptly and efficiently. The regulation of respiratory enzymes by highly responsive and precise transcriptional regulators confers distinct advantage for survival in sometimes harsh and extreme conditions. The organohalide-respiring bacterium Desulfitobacterium hafniense DCB-2 is able to utilise a wide range of electron acceptors and respiratory processes through tight regulation of respiratory machinery. An example of this tight regulation of respiratory machinery can been seen by biochemical analysis of the CRP-FNR-type transcriptional regulator family CprK, of which five are present in the strain. CprK1 is able to sense the presence of the physiological ligand, 3-chloro-4-hydroxyphenylacetic acid (CHPA), of reductive dehalogenase CprA1 with nM affinity. In this work we demonstrate that CprK1 is able to distinguish between the chlorinated CprA1 substrate CHPA and the non-chlorinated product 4-hydroxyphenylacetic acid (HPA) by ‘pKa interrogation’ of the 4-hydroxy moiety and by the atomic radius of the ortho-moiety. Through the use of in vitro biophysical and in vivo transcriptional response assays, we show that CprK1 is able to sense a number of halogenated phenols, including phenylacetic acids and nitrophenols. We also demonstrate that a 4-hydroxyl group is essential for CprK1 activation. In Chapter 4, an attempt to modify the effector sensitivity of CprK1 is performed by site-specific and random mutagenesis, and mutant selection assays are developed. We show that CprK1 is highly resistant to effector specificity modifications, with seemingly minor or conservative amino acid changes removing CprK1’s ability to initiate transcription. In Chapter 5, the CprK1 paralogue, CprK4 from D. hafniense DCB-2 is characterised by in vitro biophysical and in vivo transcriptional response assays in order to assess its potential as a biosensor. We show that CprK4 is able to bind cis-regulatory DNA elements dehaloboxes 7 and 10 in the absence of effector by Surface Plasmon Resonance (SPR) protein array; however, we were unable to identify its effectors reliably. Due to the unknown nature of CprK4’s effector, it is still unclear whether CprK4 could be a valuable biosensor.
3

New insights into reductive detoxification of chlorinated solvents and radionuclides

Fletcher, Kelly Elizabeth 08 November 2010 (has links)
Naturally occurring bacterial populations are capable of detoxifying chlorinated compounds and immobilizing the radionuclide uranium via reductive processes. This study addressed the following three knowledge gaps in the fields of chlorinated solvent and uranium bioremediation, 1) the risks and benefits of coupling bioremediation with thermal treatment for clean-up of chlorinated ethene-contaminated sites, 2) the accuracy of available techniques for the monitoring of chlorinated solvent bioremediation, and 3) the role of gram positive Desulfitobacterium spp. in uranium immobilization. Experiments demonstrated that thermal treatment increases electron donor availability, but the increased electron donor was not used to fuel reductive dechlorination and was actually consumed for methanogenesis. Two approaches for monitoring chlorinated solvent bioremediation were investigated, molecular techniques and compound-specific isotope analysis (CSIA). Results demonstrated that while Dehalococcoides (Dhc) gene expression was up-regulated under conditions inhibitory to dechlorination, the isotope effects associated with dechlorination reactions catalayzed by Dhc populations in consortia and in pure cultures were similar. U(VI) reduction by multiple Desulfitobacterium isolates was demonstrated. Interestingly, while almost all U(VI)-reducing populations have been reported to produce uraninite (UO2), the product of U(VI) reduction by Desulfitobacterium isolates was a unique form of insoluble mononuclear U(IV).

Page generated in 0.0707 seconds