• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 26
  • 10
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 153
  • 36
  • 36
  • 31
  • 30
  • 20
  • 17
  • 16
  • 16
  • 11
  • 11
  • 11
  • 11
  • 10
  • 9
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Rhodium zeolites as catalysts for hydrodesulfurization reactions

Givens, Kathyrn Elizabeth January 1982 (has links)
Fuel stocks today contain a large percentage of sulfur, nitrogen, and metals. To meet processing and environmental regulations, these components must be removed. Hydrodesulfurization reactions and the use of catalysts to enhance this process have been under extensive study in recent years. The main hydrodesulfurization catalyst used has been cobalt-molybdenum on an alumina support. This study investigated rhodium incorporated zeolites as catalysts for thiophene hydrodesulfurization reactions. The compounds RhCl₃ • 3H₂O, Rh₂(CO₂CH₃)₄, and Rh(PPh₃)₃Cl were adsorbed onto 13X and ZSM5 zeolites. Results of thiophene hydrodesulfurization over RhCl₃-13X and RhCl₃-ZSM5 were compared to those of commercial Co-Mo/Al₂O₃ to determine the most active catalyst under different experimental conditions. X-ray photoelectron spectroscopy, infrared spectroscopy, x-ray diffraction and microelectrophoresis were used to characterize the zeolites. Hydrodesulfurization reactions were carried out in a pulse microreactor/gas chromatograph system as a function of gas flow rate and reaction temperature. Reaction products were identified by mass spectrometry. RhCl₃-13X exhibited maximum thiophene conversion when presulfided with thiophene injections at 100°C, or with a 10 vol% H₂S/90 vol% H₂ gas mixture at 400°C. At a H₂S-sulfiding temperature of 250°C, the commercial Co-Mo/Al₂O₃ catalyst was most active. Over all catalysts, the only reaction products were hydrogen sulfide, butene and butane. The butene/butane product ratio increased with increasing temperature. On the basis of these results and XPS measurements, Rh(I) was identified as the active hydrodesulfurization species. / Master of Science
42

Simulation of the adsorptive desulphurisation of diesel fuel

Sanyangare (Chawira), Faith January 2016 (has links)
A Research Report submitted to the Faculty of Engineering and the Built Environment, University of the Witwatersrand, in partial fulfilment of the requirements for the degree of Master of Science in Engineering (MSc 50/50) School of Chemical and Metallurgical Engineering, Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, South Africa November, 2016 / The global focus on cleaner air has seen sulphur removal processes’ gaining popularity and adsorptive desulphurisation has been identified as an effective alternative. Adsorptive desulphurisation was used to simulate and evaluate the performance of the polymer supported imidation agent (Sodium N-chloro-polystyrene sulphonamide) as an adsorbent in the desulphurisation of diesel fuel. This study involved the development of a mathematical model for the adsorption process of sulphur on the polymer supported imidation agent, based on the mass balance on a continuous fixed bed column and pseudo second order kinetics. The developed model was solved using numerical methods, and the simulation of the process carried out varying different parameters; the inlet sulphur concentration, the adsorption column bed height and the particle size (radius) of the adsorbent. The simulation showed that the adsorption capacity of the studied adsorbent increased with increase in the inlet sulphur concentration; an increase in the adsorption bed height and a decrease in the adsorbent particle size. Validation of the simulation done was carried out by comparing the simulation data with experimental data. The proposed model fit experimental data and can be used to predict the inlet concentration conditions, bed height and particle size of the adsorbent. The overall research enhances the understanding of the adsorptive desulphurisation of diesel fuel using the polymer supported imidation agent and the mathematical modelling of the process. / MT2017
43

A Study on Desulfurization of Hot Metal Using Different Agents

Lindström, David January 2014 (has links)
This thesis deals with desulfurization of hot metal using different agents. The aim of this study was to improve the understanding of commonly used desulfurization agents such as fluidized CaO, CaC2, commercial-CaO, Mg, and mixtures of commercial-CaO-Mg. The possibility to use ZnO for desulfurization of hot metal was also investigated. The desulfurization mechanisms and kinetics of these agents were studied. A broad comparison of the desulfurization abilities of the agents was performed under the same experimental conditions. The experimental studies were carried out in a high temperature resistance furnace at 1773 K with good quenching ability and precise control of the oxygen partial pressure. The influence of ZnO in blast furnace slag on the sulfur removal potential was studied. It was found that ZnO does not stay in blast furnace slag under relevant oxygen potentials and consequently has no influence on its sulfur removal capacity. The reaction mechanism of Mg was studied by adding pure Mg into hot metal. It was found that most Mg (about 90 %) escaped as gas in less than two seconds, only providing a little desulfurization. MgS is not formed by homogenous nucleation, but on MgO particles originating from the surface of the added Mg metal. The growth of CaS around CaC2, fluidized CaO and commercial-CaO were measured and compared. The parabolic rate constants were evaluated to be 2.4∙10-7 [cm s-1] for CaC2, and 5∙10-7 [cm s-1] for fluidized CaO particles. The bigger parabolic rate constant of fluidized CaO explains why fluidized CaO achieved a much better desulfurization of hot metal than CaC2 under the same experimental conditions. Commercial-CaO performed less satisfactory in comparison to fluidized CaO powder. This was due to both its less reactive surface and agglomeration of the particles. Agglomerates and large CaO particles lead to 2CaO.SiO2 formation which hindered further utilization of CaO for desulfurization. The 2CaO.SiO2 formation was favored by a high oxygen potential. Since the desulfurization reaction of CaO not only produced CaS but also oxygen, the local oxygen concentration around big CaO particles was higher than around small particles. When small CaO particles were added together with Mg they quickly transformed to CaS. The Mg-gas helped to distribute the CaO particles in the hot metal and improved the kinetic conditions. The desulfurization abilities of some commonly used agents, namely fluidized CaO, CaC2, commercial-CaO, Mg, mixtures of commercial-CaO-Mg, and ZnO were studied and compared under the same experimental conditions. While fluidized CaO showed the best performance, commercial-CaO mixed with 20 mass % Mg achieved the second best desulfurization. Mg-granules performed slightly better than CaC2 and commercial-CaO, but somewhat less satisfactory compared to fluidized CaO and commercial-CaO-Mg mixtures. ZnO does not influence the sulfur concentration of hot metal. / <p>QC 20140404</p>
44

Nanopowder nickel aluminate for benzothiophene adsorption from dodecane

Berrigan, John Daniel 10 November 2008 (has links)
Nickel aluminate reduced in hydrogen for 3 h at 500ºC was studied for desulfurization of model fuel comprised of dodecane spiked with benzothiophene (300 ppmw S). The nanopowder adsorbent was synthesized using combustion chemical vapor condensation, which created nickel aluminate with a BET specific surface area of 57.8 m2/g and average particle size of 11.7 nm. The nickel aluminate adsorbent removed 23 µmol of sulfur gram at breakthrough (<15 ppmw S). Regeneration by further heat treatment in hydrogen or air recovered 25% and 40% of original capacity, respectively.
45

Desulfurization of waste tire pyrolytic oil (TPO) using adsorption and oxidation techniques

Mello, Moshe 01 1900 (has links)
M. Tech (Department of Chemistry, Faculty of Applied and Computer Sciences) Vaal University of Technology. / The presence of tires in open fields, households and landfills is a great threat to the wellbeing of the ecosystem around them. Tire creates an ideal breeding ground for disease carrying vermins and their possible ignition threatens the surrounding air quality due to the harmful gases produced during combustion. Pyrolysis of tires produces four valuable products namely; char, steel, tire pyrolytic oil (TPO) and noncondensable gases. TPO has been reported to have similar properties to commercial diesel fuel. The biggest challenge faced by TPO to be used directly in combustion engines is the available sulfur content of about 1.0% wt. Considering the stringent regulations globally for allowable sulfur content in liquid fuels, TPO therefore, requires deep desulfurization before commercialization. In this study, different desulfurization techniques were applied to reduce the sulfur content in TPO. A novel study on combination of adsorptive and air-assisted oxidative desulfurization (AAOD) was developed for desulfurization of TPO. Different carbon materials were employed as catalyst and/or adsorbent for the AAOD system. The effect of operating conditions; catalyst/adsorbent dosage, H2O2/HCOOH ratio, reaction time, temperature and air flowrate were studied. Oxidation equilibrium was reached at 80 °C for both commercial activated carbon (CAC) and activated tire char (ATC) at a reaction time of 50 min. With a total oil recovery of more than 90% and the initial sulfur content of 7767.7 ppmw, the presence of air at a flow rate of 60 l/hr increased oxidation from 59.2% to 64.2% and 47.4% to 53% for CAC and ATC, respectively. The use π-complexation sorbent was also applied to study the selectivity of such sorbents to organosulfur compounds (OSC) found in liquid fuels. The π-complexationbased adsorbent was obtained by ion exchanging Y-zeolite with Cu+ cation using liquid phase ion exchange (LPIE). Batch adsorption experiments were carried out in borosilicate beakers filled with modified Cu(I)-Y zeolite for both TPO and synthesized model fuels. For model fuels (MF), the selectivity for adsorption of sulfur compounds followed the order dibenzothiophene (DBT)> benzothiophene (BT)> Thiophene.
46

Modeling of Sulfur Removal from Heavy Fuel Oil Using Ultrasound-Assisted Oxidative Desulfurization

Hernandez Ponce, Claudia 07 1900 (has links)
Growing environmental concerns, such as global warming, are giving rise to new regulations imposed by the International Maritime Organization (IMO) on sulfur content for marine fuels, thus, constraining refining processes. Oxidative desulfurization (ODS) is an appealing desulfurization method with some advantages over traditional processes like hydrodesulfurization (HDS), such as mild operating conditions and no-hydrogen consumption. ODS could be employed as a complementary or alternative process for HDS. During the oxidative desulfurization, the organo-sulfur compounds are oxidized to polar sulfones. Then, such sulfones are separated from the treated fuel oil using techniques such as liquid-liquid extraction. In the present work, the separation of oxidized sulfur-containing compounds of heavy fuel oil using ultrasound-assisted technology has been investigated and simulated in Aspen Plus. The oxidant selected was hydrogen peroxide, while the catalyst was acetic acid. The chosen solvent for the sulfone separation was acetonitrile. The primary goal of this work is to successfully emulate the operation performed by an oxidative desulfurization pilot plant-scale apparatus designed by Tecnoveritas®, which will later allow the analysis of the parameters on the overall sulfur removal efficiency.
47

The development of a one-dimensional quasi-steady state model for the desulphurisation process at Saldanha Steel

Scheepers, Emile 04 1900 (has links)
Thesis (MScIng)--University of Stellenbosch, 2003. / ENGLISH ABSTRACT: The pneumatic injection of reagent powder into molten iron has become the preferred way to carry out iron and steel desulphurisation. It is therefore essential to not only understand the thermodynamic implications, but also the kinetic principles that govern the desulphurisation process. Key variables that influence the kinetics of the procedure are the condition and composition of the top slag and the melt as well as the injection conditions. Notable injection parameters include reagent flowrate, injection-lance depth and carrier gas flowrate. Owing to sampling restrictions, the subsequent data from Saldanha Steel®, South Africa does not provide adequate insight into the kinetic behaviour of the desulphurisation process and it was therefore the focus of this research to provide an improved quantitive comprehension of the calcium carbide injection procedure at Saldanha Steel. For this purpose a one-dimensional quasi-steady state model for momentum, heat- and mass transfer in rising gas-liquid-powder plumes has been developed for conditions relevant to the Saldanha Steel refining process. Combined with a model predicting the contribution of the topslag to the process, the overall rate of desulphurisation as a function of time can be determined, thus affording the ability to quantitatively explore and analyse the influence of the afore-mentioned injection parameters, as well as the nature of both the topslag and the melt, on the kinetics of the desulphurisation process. Sensitivity analyses concluded that individual increases in the calcium carbide flowrate, the depth of injection and the amount of carry-over slag will result in a reduction in the injection time, while a decrease in the reagent particle diameter and the initial mass of iron in the ladle will have the same effect. Molten iron temperature losses brought about by prolonged injection needs to be electrically recovered within a steelmaking furnace at a high cost. Owing to the high cost of the desulphurising agent, any reduction in the required injection time, while still maintaining product specifications, will therefore result in diminishing overall production costs. Although all the results contained in this study is of particular interest to the Saldanha Steel scenario, it also provides invaluable information and insights into the important variables and parameters playing a role in injection desulphurisation processes in general, along with the influence that changing conditions can have on the end result of such a procedure. / AFRIKAANSE OPSOMMING: Die pneumatiese inspuiting van reagentpoeier is die populêrste ontswawelingsmetode in die yster- en staal bedryf. Dit is dus van groot belang dat die gepaardgaande termodinamiese en kinetiese beginsels betrokke by die ontswawelingsreaksies baie goed verstaan word. Die kondisie en samestelling van die bo-slak en die vloeibare yster, asook die inspuitingkondisies is twee van die belangrikste veranderlikes wat die kinetika van die ontswawelingsproses beïnvloed. Beperkte monsternemingsgeleenthede het veroorsaak dat die relevante data, soos voorsien deur Saldanha Staal®, nie die nodige kinetiese insig in verband met die ontswawelingreaksie weergee nie. Dit is dus die doel van hierdie werkstuk om ‘n verbeterde kwantitatiewe begrip van die ontswawelingsproses by Saldanha Staal daar te stel. Vir hierdie doeleinde is ‘n een-dimensionele, kwasi-gestadigde toestand model vir stygende gas-vloeistof pluime ontwikkel. Die model inkorporeer momentum-, hitte- en massaoordragsprinsiepe en is verteenwoordigend van die ontswawelingsproses by Saldanha Staal. ‘n Tweede model simuleer die bydrae wat die bo-slak tot die algehele ontswawelingsproses maak en saam gee hierdie twee modelle die algehele ontswawelingstempo weer as ‘n funksie van tyd. Die modelle word ook gebruik om die invloed van die bogenoemde inspuitingsveranderlikes op die proses te ondersoek. Deeglike sensitiwiteitsanalise het gewys dat ‘n verhoging in die kalsium karbied vloeitempo, asook die inspuitingsdiepte van die lans en die hoeveelheid slak wat vanaf die boogoond na die ontswawelingseenheid oorgedra word, ‘n vermindering in die vereisde inspuitingstyd te weeg bring. Verkleining in die kalsium kardied partikels se gemiddelde diameter en vermindering van die hoeveelheid yster in die torpedokarre aan die begin van die proses, het dieselfde uitwerking op die vereisde inspuitingstyd. Geweldig baie geld moet aan elektrisiteit spandeer word om die temperatuur wat verlore gaan as gevolg van onnodige lang inspuitingstye, in die staalmaakoonde te herwin. Gekombineerd met die feit dat die kalsium karbied reagent baie duur is, beteken dit dat reduksies in die vereisde ontswaweling inspuitingstyd groot besparings te weeg kan bring. Alhoewel die saamgevatte resultate van spesifieke belang is vir die Saldanha Staal proses, verskaf hierdie studie waardevolle informasie oor die belangrikheid van verskeie veranderlikes, asook die rol wat veranderende toestande op die eindresultate van die ontswawelingproses kan hê.
48

Estudo da substituição da fluorita por alumina ou sodalita e de cal por resíduo de mármore em escórias sintéticas dessulfurantes. / Study of the replacing of fluorspar by alumina or sodalite and lime by marble waste in desulfurizing synthetic.

Grillo, Felipe Fardin 27 July 2015 (has links)
A siderurgia vem sofrendo transformações que buscam inovação e matérias-primas alternativas. Dentro deste contexto, o uso de resíduos industriais para a formação de escórias sintéticas é tido como alternativa na busca de novos materiais e rotas de reaproveitamento de resíduos. Portanto, este trabalho teve como objetivo estudar o uso de escórias sintéticas na etapa de dessulfuração do ferro-gusa, aço e ferro fundido. Assim como, propor a utilização da sodalita e da alumina em substituição à fluorita e o resíduo de mármore em substituição à cal convencional. Inicialmente, o resíduo foi caracterizado utilizando as seguintes técnicas: análise química, análise granulométrica, área de superfície específica, difração de raios-X, microscopia eletrônica de varredura (MEV) e análise de espectroscopia por energia dispersiva (EDS). Os resultados da caracterização mostraram que aproximadamente 90% das partículas do resíduo de mármore estão abaixo de 100m e sua área superficial foi de 0,24m²/g. Através da difração de raios-X foi observado que o resíduo é composto por CaCO3, MgCO3 e SiO2. Na sequência, foram feitas simulações com o software Thermo-Calc para obter dados termodinâmicos das fases presentes nas misturas e compará-los com os resultados experimentais. Além disso, também foram calculados dados de capacidade de sulfeto (Cs), partição de enxofre (Ls) e basicidade ótica () das misturas iniciais. Posteriormente, foram realizados os ensaios experimentais em escala laboratorial para ferro-gusa, ferro fundido e aço, respectivamente nas temperaturas de 1400°C, 1550°C e 1600°C. Nos ensaios de dessulfuração do aço e do ferro-gusa, utilizou-se um rotor de alumina com o objetivo de favorecer a agitação no metal e aumentar a remoção de enxofre. Na etapa de dessulfuração do ferro-gusa, constatou-se que a fase sólida de CaO é a responsável pela remoção de enxofre e que a presença das fases silicato tricálcio e aluminato tricálcio (3CaO.SiO2 e 3CaO.Al2O3) limitam a reação, sendo maiores suas concentrações nas escórias que utilizaram o resíduo de mármore e sodalita, devido a presença de SiO2 e Al2O3 nestas matérias-primas. Já para o aço e o ferro fundido, que foram estudados com escórias à base de CaO e Al2O3, observou-se que o aumento da fase líquida favoreceu a dessulfuração. Verificou-se que a dessulfuração no ferro fundido foi por escória de topo e no aço por um processo misto, onde a fase líquida e fase sólida participaram da dessulfuração. / The steel industry is going through transformations aiming at innovation and use of alternative raw materials. In this context, the use of industrial waste in the production of synthetic slag is considered an important option on the search for new materials and waste reuse. Therefore, the aim of this work was to study the use of synthetic slags at the desulfurization of hot metal, steel and cast iron. It was proposed the use sodalite and alumina instead of fluorite and the use of marble waste instead of lime. Marble waste was characterized by chemical analysis, particle size analysis, specific surface area, X-ray diffraction (XRD), scanning electron microscopy (SEM), analysis with energy dispersive spectroscopy (EDS). The characterization results showed that almost 90% of the particles are smaller than 100 m and its specific surface area was 0.2406m²/g. The XRD has showed the presence of compounds such as CaCO3 and MgCO3 and SiO2. Further, simulations using Thermo-Calc were performed in order to obtain thermodynamic data of the present phases, and to compare with experimental data. Furthermore, sulfide capacity (Cs), sulfur partition (Ls) and optical basicity () were determined. The experimental procedures were carried out at 1400°C, 1550°C and 1600°C for hot metal, cast iron and steel, respectively. In addition, steel and hot metal tests were performed using an alumina rotor to raise the desulphurization. In hot metal desulphurization, solid CaO phase was responsible for sulfur removal. Furthermore, 3CaO.SiO2 and 3CaO.Al2O3 phases limited the reaction, being their concentration higher in the slags with marble waste and sodalite, due to the presence of SiO2 and Al2O3 in these raw materials. Slags composed mainly of CaO and Al2O3 were used in steel and cast iron desulphurization. It was observed that when increasing liquid phase, the reaction of desulphurization was favored. Besides, it was found that cast iron desulfurization occurs by top slag mechanism and steel desulfurization by a mixed process where the liquid phase and solid phase have influence on the desulfurization.
49

Pilot-Scale Demonstration of hZVI Process for Treating Flue Gas Desulfurization Wastewater at Plant Wansley, Carrollton, GA

Peddi, Phani 1987- 14 March 2013 (has links)
The hybrid Zero Valent Iron (hZVI) process is a novel chemical treatment platform that has shown great potential in our previous bench-scale tests for removing selenium, mercury and other pollutants from Flue Gas Desulfurization (FGD) wastewater. This integrated treatment system employs new iron chemistry to create highly reactive mixture of Fe^0, iron oxides (FeOx) and various forms of Fe (II) for the chemical transformation and mineralization of various heavy metals in water. To further evaluate and develop the hZVI technology, a pilot-scale demonstration had been conducted to continuously treat 1-2 gpm of the FGD wastewater for five months at Plant Wansley, a coal-fired power plant of Georgia Power. This demonstrated that the scaled-up system was capable of reducing the total selenium (of which most was selenate) in the FGD wastewater from over 2500 ppb to below 10 ppb and total mercury from over 100 ppb to below 0.01 ppb. This hZVI system reduced other toxic metals like Arsenic (III and V), Chromium (VI), Cadmium (II), Lead (II) and Copper (II) from ppm level to ppb level in a very short reaction time. The chemical consumption was estimated to be approximately 0.2-0.4 kg of ZVI per 1 m^3 of FGD water treated, which suggested the process economics could be very competitive. The success of the pilot test shows that the system is scalable for commercial application. The operational experience and knowledge gained from this field test could provide guidance to further improvement of technology for full scale applications. The hZVI technology can be commercialized to provide a cost-effective and reliable solution to the FGD wastewater and other metal-contaminated waste streams in various industries. This technology has the potential to help industries meet the most stringent environmental regulations for heavy metals and nutrients in wastewater treatment.
50

A Flow Calorimetric Study of Adsorption of Dibenzothiophene, Naphthalene and Quinoline on Zeolites

Thomas, John Keir 15 May 2008 (has links)
The purpose of this work is to develop a reliable procedure for determination of liquid phase heats of adsorption via a flow calorimetric technique. The second objective is to study heats of adsorption of target sulfur compounds on potential desulfurization sorbents. Thirdly, we strive to relate the data obtained to the properties of both the sorbent and sorbates studied. Finally, the ultimate goal of this research is to use the data obtained to develop a high capacity selective adsorbent for the desulfurization of diesel fuel. Liquid phase flow adsorption experiments were conducted on sodium-Y zeolite (NaY), nickel exchanged NaY zeolite (NiY) and cesium-exchanged NaY zeolite (CsY). The solutions used in calorimetric experiments included naphthalene in n-hexadecane (C16), dibenzothiophene (DBT) in C16, and quinoline in C16. These solutions were used to model the adsorption of aromatic, sulphur-containing and nitrogen-containing compounds in diesel fuel, respectively. Additional experiments were conducted using equimolar concentrations of all three species in C16 to examine competitive adsorption behaviour of the mixture. During heat flow experiments, effluent samples were collected and analysed to obtain breakthrough curves for the systems. Heat of adsorption data were obtained via flow microcalorimetry using a novel procedure developed by this group. In this study, some experiments were conducted to examine the repeatability and utility of this new method. Characterization experiments were also conducted including BET surface area analysis, X-Ray diffraction (XRD) analysis and Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) analysis to determine the properties of the sorbents. These properties were then related to data obtained in flow adsorption calorimeter experiments. A detailed discussion on the development of a novel method for determination of liquid phase heats of adsorption is presented. Analysis of calculation results using this new method show good repeatability relative to the previous method used. Equilibrium adsorption relationships are developed using the Langmuir adsorption model, and these results are compared to flow adsorption results obtained from the calorimeter. Results indicate that in terms of desulfurization capability, NaY appeared to be the best sorbent. Heats of adsorption were only moderate on NaY, indicating that regeneration of the sorbent would not be difficult, and NaY had the highest sulfur capacity of the sorbents studied. This result was not in agreement with literature results, and it is proposed that the discrepancy is the result of disruption of the crystalline structure of our sorbents during the modification process. Recommendations are presented for ongoing work, including important calorimeter experiments, modifications for improvement of experimental procedure and apparatus, additional sorbent characterization for elucidation of adsorption mechanisms, and finally experiments for verification and further validation of our innovative experimental technique.

Page generated in 0.0855 seconds